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Abstract Peer-to-peer (P2P) topology has a significant in-
fluence on the performance, search efficiency and function-
ality, and scalability of the application. In this paper, we
investigate a multi-swarm approach to the problem of neigh-
bor selection (NS) in P2P networks. Particle swarm share
some common characteristics with P2P in the dynamic so-
cially environment. Each particle encodes the upper half of
the peer-connection matrix through the undirected graph,
which reduces the search space dimension. The portion of
the adjustment to the velocity influenced by the individual’s
cognition, the group cognition from multi-swarms, and the
social cognition from the whole swarm, makes an important
influence on the particles’ ergodic and synergetic perfor-
mance. We also attempt to theoretically prove that the multi-
swarm optimization algorithm converges with a probabil-
ity of 1 towards the global optima. The performance of our
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approach is evaluated and compared with other two differ-
ent algorithms. The results indicate that it usually required
shorter time to obtain better results than the other considered
methods, specially for large scale problems.
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1 Introduction

Peer-to-peer computing has recently attracted great interest
and attention of the computing industry and gained pop-
ularity among computer users and their networked virtual
communities [1, 2], since it allows the implementation of
large distributed repositories of digital information. Many
peer-to-peer systems also have emerged as platforms for
users to search and share information over the Internet [3].
In essence, a peer-to-peer system can be characterized as
a distributed network system in which all participant com-
puters/nodes have symmetric capabilities and responsibili-
ties. In the system, numerous nodes of equal roles are con-
nected through an arbitrary network and exchange data or
services directly with each other. All participants in a peer-
to-peer system act as both clients and servers to one another,
thereby surpassing the conventional client/server model and
bringing all participant computers together with the purpose
of sharing resources such as content, bandwidth, CPU cy-
cles [4]. Peer-to-peer networks are applied to many fields,
which includes communication and collaboration, distrib-
uted computing, Internet service support, database system,
and content/data distribution, even service platform for pub-
lic welfare (e.g. providing processing power to fight can-
cer) [5–10]. More specifically, P2P file sharing systems set
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up a network or pool of peers on Internet and provide fa-
cilities for searching and transferring files between them.
Since these systems provide a economical platform for data-
sharing that is highly scalable and robust, a great number of
commercial and academic projects have been developed us-
ing this technology. However, it is reported in a recent sur-
vey that Peer-to-Peer applications generate one-fifth of the
total Internet traffic, and it is believed that it will continue to
grow [11, 12].

In pure P2P systems, individual computers communicate
directly with each other and share information and resources
without using dedicated servers. A node cannot realistically
keep the addresses of all other peers, so an overlay network
need be constructed where each node keeps addresses of
a few other peers (called its neighbors) at the application
level. These connections may be directed, may have differ-
ent weights and are comparable to a graph with nodes and
vertices connecting these nodes. Defining how these nodes
are connected affects many properties of an architecture that
is based on a P2P topology, which has a significant impact
on application properties such as the performance, search
efficiency, reliability and scalability of a system. The virtual
topology also determines the communication costs and ef-
ficiency associated with running the P2P application, both
at individual hosts and in the aggregate. A common diffi-
culty in the current P2P systems is caused by the dynamic
membership of peer hosts. The neighbor selection mecha-
nism and topology control become very important topics in
P2P networks [13].

On the other hand, the performance and availability of
these systems relies on the voluntary participation of their
users, and so they may be highly variable and unpredictable,
which results in a large proportion of the participants (20 to
40% of Napster and almost 70% of Gnutella peers) share
few or no files [14]. This phenomenon is known as free-
loading: peers that consume more resources than they con-
tribute. One of the reasons for this problem is that those
users, called free-riders, benefit largely from contributions
of other users but reduce the system performance for con-
tributing users. And self-interested behavior of the peers had
no taken into account at the design stage. In fact, the P2P
system’s users act rationally trying to maximize the benefits
obtained from using the system’s shared resources. There-
fore, it will be necessary to find mechanisms that provide
incentives and encourage cooperative behavior between the
peers.

Particle Swarm Optimization (PSO) algorithm is inspired
by social behavior patterns of organisms that live and in-
teract within large groups. In particular, PSO incorporates
swarming behaviors observed in flocks of birds, schools of
fish, or swarms of bees, and even human social behavior,
from which the Swarm Intelligence (SI) paradigm [15] has
emerged [16]. It could be implemented and applied to solve

various function optimization problems, or the problems that
can be transformed to function optimization problems. As an
algorithm, the main strength of PSO is its fast convergence,
which compares favorably with many global optimization
algorithms [17]. In this paper, we explore the neighbor-
selection problem based PSO for P2P Networks. We intro-
duce the crossover neighborhood organization mechanism
from the social networks to improve the swarm algorithm,
which results in more mutual trust, mutual benefit, equality
and cooperation among the participants.

This paper is organized as follows. We introduce the
problem and formulate the objective in Sect. 3. Our ap-
proach based on particle swarm algorithm is presented in
Sect. 4. In this section, the issues about the algorithm de-
sign, dynamic chaotic characteristics, and convergence the-
oretical analysis are also discussed. In Sect. 5, experiment
results and discussions are provided in detail, followed by
some conclusions in Sect. 6.

2 Related research work

P2P comprises peers and the connections between these
peers. A common difficulty in the current P2P systems is
caused by the dynamic membership of peer hosts. This re-
sults in a constant reorganization of the overlay topology
[1, 18–21]. As the size of distributed systems keeps growing,
no entity has a global knowledge of the system. As much as
this property is essential to ensure the scalability, monitoring
the system under such circumstances is a complex task [22].
Meo and Milan [23] investigated the design of content man-
agement at the nodes. They proposed criteria for the QoS
design of content management policies. And they evaluated
its performance by an analytical model based on a Markov-
ian approach. In the application system, finding the desired
resource and constructing the efficient topology are the crit-
ical issues in peer-to-peer networks. Risson and Moors [24]
surveyed the search methods about finding the resource in
the recent research towards robust peer-to-peer networks. In
this paper, we pay more attentions on peer selection, since it
offers a unique opportunity for P2P networks to tackle both
the free-riding and the quality-of-service (QoS) challenges
[25].

Lo et al. [26] defined the supernode selection problem
which has emerged across a variety of peer-to-peer appli-
cations. Supernode selection involves selection of a sub-
set of the peers to serve a special role. The supernodes
must be well-dispersed throughout the peer-to-peer over-
lay network, and must fulfill additional requirements such
as load balance, resource needs, adaptability to churn, and
heterogeneity. The supernode selection problem must meet
the additional challenge of operating within a huge, un-
known and dynamically changing network. They describe
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three generic supernode selection protocols. They devel-
oped for peer-to-peer environments: a label-based scheme
for structured overlay networks, a distributed protocol for
coordinate-based overlay networks, and a negotiation pro-
tocol for unstructured overlays. Kothapalli and Scheideler
presented a general methodology for designing supervised
peer-to-peer systems [27]. It can be seen as being between
server-based systems and pure peer-to-peer systems. The
supervisor has to store a constant amount of information
about the system at any time and needs to send a small con-
stant number of messages to integrate or remove a peer in
a constant amount of time. Koulouris et al. [28] presented
a framework and an implementation technique for a flex-
ible management of peer-to-peer overlays. The framework
provides means for self-organization to yield an enhanced
flexibility in instantiating control architectures in dynamic
environments, which is regarded as being essential for P2P
services to access, routing, topology forming, and applica-
tion layer resource management. In these P2P applications,
a central tracker decides about which peer becomes a neigh-
bor to which other peers.

A peer randomly choosing logical neighbors without any
knowledge about the underlying physical topology causes
topology mismatch between the P2P logical overlay net-
work and physical underlying network. In unstructured peer-
to-peer (P2P) systems, there exists a serious topology mis-
match problem between physical and logical network. Liu
et al. [29] analyzed the relationship between the property of
the overlay and the corresponding message duplications in-
curred by queries in a given overlay, and prove that comput-
ing an optimal overlay with global knowledge is an NP-hard
problem. Leung and Kwok [30] proposed a greedy server-
peer selection algorithm to decide from which peer should a
client download files so that the level of fairness of the whole
network is increased and expected service life of the whole
file sharing network is extended. Mastronarde et al. [31] pro-
posed a distributed and efficient framework for resource ex-
changes that enables peers to collaboratively distribute avail-
able wireless resources among themselves based on their
quality of service requirements, the underlying channel con-
ditions, and network topology. The resource exchanges are
enabled by the scalable coding of the video content and
the design of cross-layer optimization strategies, which al-
low efficient adaptation to varying channel conditions and
available resources. They compare the designed low com-
plexity distributed resource exchange algorithms against an
optimal centralized resource management scheme and show
how their performance varies with the level of collabora-
tion among the peers. They measure system utility in terms
of the multimedia quality and show that collaborative ap-
proaches achieve 50% improvement over non-collaborative
approaches. Additionally, their distributed algorithms per-
form within 10% system utility of a centralized optimal re-
source management scheme.

Fenner et al. [32] presented a stochastic model for a so-
cial network, where new actors may join the network, exist-
ing actors may become inactive and, at a later stage, reac-
tivate themselves. The model captures the evolution of the
network, assuming that actors attain new relations or be-
come active according to the preferential attachment rule.
They derived the mean-field equations for this stochas-
tic model and shown that, asymptotically, the distribution
of actors obeys a power-law distribution. The result illus-
trated that the distribution of user accesses was asymptot-
ically a power-law distribution. Sacha et al. [33] proposed
and evaluated a search algorithm. The results indicated that
it achieved significantly better performance than random
walking. The approach can be used by certain classes of
applications to improve the availability and performance of
system services by placing them on the most stable peers,
as well as to reduce the amount of network traffic required
to discover and use these services. They demonstrated the
design of a naming service on the gradient topology.

Bisnik et al. [34] developed a model for random walk-
based search mechanisms in unstructured P2P networks.
The model is used to obtain analytical expressions for the
performance metrics of random walk search in terms of the
popularity of the resource being searched for and the random
walk parameters. Simulation results illustrated that the per-
formance of the equation-based adaptive search was signif-
icantly better than the non-adaptive random walk and other
straightforward adaptive mechanisms. Kersch et al. [35] de-
fined a loose and stochastic long-range connection main-
tenance mechanism, which can significantly reduce main-
tenance overhead in large networks with high churn rates
without affecting routing performance. They used Klein-
berg’s small worlds model to describe and (re)construct
long-range connections. The maintenance method scale log-
arithmically with the system’s size, which is the theoretical
lower bound for maintenance traffic to ensure connectivity
of the network.

Researchers have also considered clustering close peers
based on their IP addresses (e.g., [36, 37]) or probed dis-
tances [38]. Xu [39] presented a decentralized and fault
tolerant protocol called Alpha-Beta Cluster-based protocol,
for ABC. In ABC, a cluster of nodes work together to of-
fer efficient greedy routing and the size of each cluster can
vary between an upper bound (Alpha) and a lower bound
(Beta). The flexible cluster scheme helps to maintain the
stability of the system. Ramaswamy et al. [40] described
a Connectivity-based Distributed Node Clustering scheme
(CDC). The scheme presented a scalable and efficient solu-
tion for discovering connectivity-based clusters in peer net-
works. To cope with the typical dynamics of P2P networks,
they provided mechanisms to allow new nodes to be incor-
porated into appropriate existing clusters and to gracefully
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handle the departure of nodes in the clusters. These mecha-
nisms enable the CDC scheme to be extensible and adapt-
able in the sense that the clustering structure of the net-
work adjusts automatically as nodes join or leave the system.
Their experiments shown that utilizing message-based con-
nectivity structure can considerably reduce the messaging
cost and provide better utilization of resources, which in turn
improved the quality of service of the applications executing
over decentralized peer-to-peer networks. Huang et al. [3]
proposed a cluster-based peer-to-peer system, called Peer-
Cluster, for sharing data over the Internet. In PeerCluster,
all participant computers are grouped into various interest
clusters, each of which contains computers that have the
same interests. The intuition behind the system design was
that by logically grouping users interested in similar top-
ics together, it can improve query efficiency. To efficiently
route and broadcast messages across/within interest clusters,
a hypercube topology was employed. In addition, to ensure
that the structure of the interest clusters is not altered by
arbitrary node insertions/deletions, they have devised cor-
responding JOIN and LEAVE protocols. The experimental
results shown that PeerCluster outperformed previous ap-
proaches in terms of query efficiency, while still providing
the desired functionality of keyword-based search. Tewari
and Kleinrock [41] provided mechanisms for modeling clus-
tering in file popularity distributions and the consequent
non-uniform distribution of file replicas. They derived re-
lations shown the effect of the number of replicas of a file
on the search time and on the search cost for a search for
that file for the clustered demands case in such networks
for both random walk and flooding search mechanisms. The
derived relations were used to obtain the optimal search per-
formance for the case of flooding search mechanisms. The
potential performance benefited that clustering in demand
patterns affords was captured by our results. Interestingly,
the performance gains ware shown to be independent of
whether the search network topology reflects the clustering
in file popularity (the optimal file replica distribution to ob-
tain these performance gains, however, does depend on the
search network topology).

Empirical studies have shown free-riding (consuming re-
sources without contributing) to be prevalent in P2P file-
sharing networks. Contributors to the system are rewarded
with flexibility and choice in peer selection, resulting in
high quality streaming sessions. Free-riders are given lim-
ited options in peer selection, if any, and hence receive low
quality service. Idris and Altmann [5] proposed an incentive
scheme for P2P networks that motivates users to collaborate
within the system. The solution has an impact on the topol-
ogy formation of a P2P network. Using the market-managed
topology formation algorithm (IUTopForm) for P2P net-
works, contributing users would be clustered within clubs
that are different to clubs of free-riders. The differentiation

was possible because of a reputation system, which con-
siders users’ past contributions. The effect of this approach
was that service requests of free-riders will take longer to
be answered (if at all) than service requests of resource-
contributing users. The results shown that their approach im-
proved the overall utility of the system. Habib and Chuang
[25] proposed an incentive mechanism that provides service
differentiation in peer selection for P2P streaming based on
relative contribution of the peers. The incentive mechanism
follows the characteristics of rank-order tournaments the-
ory that considers only the relative performance of the play-
ers, and the top prizes are awarded to the winners of the
tournament. The simulation and wide-area measurement re-
sults illustrate that the approach can provide near optimal
streaming quality to the cooperative users until the bottle-
neck shifts from the streaming sources to the network. To
solve the neighbor discovery problem and network orga-
nization problem in practical wireless P2P networks, Le-
ung and Kwok [30] proposed a topology control protocol,
which consists of two components, namely, Adjacency Set
Construction (ASC) and Community-Based Asynchronous
Wakeup (CAW). The protocol is able to enhance the fair-
ness and provide an incentive mechanism in wireless P2P
file sharing applications. It is also capable of increasing the
energy efficiency.

Kurmanowytsch et al. [42] developed the P2P middle-
ware systems to provide an abstraction between the P2P
topology and the applications that are built on top of it.
These middleware systems offer higher-level services such
as distributed P2P searches and support for direct communi-
cation among peers. The systems often provide a pre-defined
topology that is suitable for a certain task (e.g., for exchang-
ing files). Gupta et al. [43] discussed the system architecture,
functionality, and applications of the CompuP2P architec-
ture. They had implemented a Java-based prototype, and the
results shown that the system was light-weight and can pro-
vide almost a perfect speedup for applications that contain
several independent compute-intensive tasks. Zeinalipour-
Yazti et al. [44] presented the Peer Fusion (pFusion) archi-
tecture that aims to efficiently integrate heterogeneous in-
formation that was geographically scattered on peers of dif-
ferent networks. The approach built on work in unstructured
P2P systems and uses only local knowledge. Our empirical
results, using the pFusion middleware architecture and data
sets from Akamai’s Internet mapping infrastructure (AKA-
MAI), the Active Measurement Project (NLANR), and the
Text REtrieval Conference (TREC) show that the architec-
ture we propose is both efficient and practical.

Ghanea-Hercock et al. [45] presented an algorithm based
on P2P agent application in which each agent has a goal to
maintain a preferred number of connections to a number of
service providing agents. The agents updated a weight value
associated with each connection, based on the perceived util-
ity of the connection to the corresponding agent. This utility
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function can be a combination of several node or edge para-
meters, or frequency of the message response from the node.
The weight is updated using a set of Hebbian-style learn-
ing rules, such that the network as a whole exhibits adap-
tive self-organizing behavior. The result was the finding that
by limiting the connection neighborhood within the overlay
topology, the resulting P2P network can be made highly re-
silient to targeted attacks on high-degree nodes, while main-
taining search efficiency.

To get some insights into the performance of different
peer organization strategies, Biersack et al. [46] analytically
three different distribution models: linear chain architecture,
tree architecture, and forest architecture. The results indi-
cated that the service capacity of these systems grew expo-
nentially with the number of chunks a file consists of. There-
fore, several heuristics and meta-heuristics have been pro-
posed to solve the problems within the feasible runtime. Koo
et al. [20] investigated the neighbor-selection process in the
P2P networks, and proposed an efficient neighbor-selection
strategy based on genetic algorithm (GA).

Networks seem to be the natural way chosen by nature
to organize individuals, resources and interactions in an ef-
fective and robust structure. Studies about natural networks
focused on the central role of emerging structures in distrib-
uted environments, and pointed out some properties such as
small-world effect and communities which are of the most
importance to guarantee a fast and efficient communication
among nodes. Carchiolo et al. [47] proposed a model for P2P
networks which mimics behaviours of peers in social and
biological networks and naturally evolves to a robust graph
of peers with some interesting properties, including small-
world effect and community decomposition. Zhuge and Li
[48] proposed three improved gossip mechanisms by map-
ping links into metric space and dynamically adapting the
number of selected neighbors to disseminate messages. Ex-
periments and comparisons shown that these mechanisms
can improve the performance of gossip in peer-to-peer net-
works. It was the effect of mapping a network into a metric
space that differentiates nodes and links according to linking
characteristics and controlling local information flow with
knowing such differences. An intrinsic rule is found by ex-
perimental comparisons and analysis: The performance of
a P2P network can be improved by designing an appropri-
ate mapping from the network into metric space or semantic
space. These research works indicated the neighbor selec-
tion in P2P would be improved further by matching social
characteristics of P2P system.

3 Neighbor-selection problem

In a P2P system, all participating peers form a P2P network
on top of an underlying physical network. A P2P network

is an abstract, logical network called an overlay network.
Based on existing research [4, 11, 29, 45, 49], we formulate
the neighbor-selection problem for P2P overlay networks in
this section. As given by Liu et al. [29], a P2P network can
be modeled based on the following assumptions:

• An overlay connection between a pair of peering nodes
consists of a number of physical links which form a short-
est path between the pair of end nodes in the physical
topology, and Internet paths are relatively stable.

• The same size packets traversing the same physical link in
a short period of time will have similar delay, as assumed
by many other measurement applications.

3.1 Modeling P2P networks

The P2P overlay networks can be modeled by an undi-
rected graph G = (V ,E) where the vertex set V represents
units such as hosts and routers, and the edge set E repre-
sents physical links connecting pairs of communicating unit.
And f : V → {1, . . . , n} be a labeling of its nodes, where
n = |V |. For instance, G could model the whole or part of
the Internet. Given an undirected graph G = (V ,E) mod-
eling an interconnection network, and a subset X ⊆ V (G)

of communicating units (peers), we can construct a corre-
sponding weighted graph D = (V ,E), where V (D) = X,
and the weight of each uv ∈ E(D) is equal to the length of
a shortest path between peer u and peer v in G. D includes
the connected edges, and is referred to as the distance graph
of G. Usually we start with a physical network G (perhaps
representing the Internet), and then choose a set of commu-
nicating peers X. The resulting distance graph D is the basis
for constructing a P2P overlay graph O = (V ,E), which is
done as follows. The vertex set V (O) will be the same as
V (D), and edge set E(O) ⊆ D(G). The key issue here is
how to select E(O). If E = [eij ]n×n is such that eij = 1 if
(i, j) ∈ E, and 0 otherwise, i.e., E is the incidence matrix
of G, then the neighbor-selection problem is to find a per-
mutation of rows and columns which brings all non-zero ele-
ments of E into the optimal possible interconnection around
the diagonal.

3.2 Metrics

In P2P file sharing, an interesting file is divided into many
fragments. The size of each fragment ranges from several
hundred kilobytes to several megabytes. When a new peer
joins the network, it begins to download fragments from
other peers. As long as it obtains one fragment of the file,
the new peer can start to serve other peers by uploading
fragments. Since peers are downloading and uploading at
the same time, when the network becomes large, although
the demands increase, the service provided by the network
also increases [50]. Given N peers, a graph G = (V ,E)
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can be used to denote an overlay network, where the set of
vertices V = {v1, . . . , vN } represents the N peers and the
set of edges E = {eij ∈ {0,1}, i, j = 1, . . . ,N} represents
their connectivities: eij = 1 if peers i and j are connected,
and eij = 0 otherwise. For an undirected graph, it is re-
quired that eij = eji for all i �= j , and eij = 0 when i = j .
Let C be the entire collection of content fragments, and
{ci ⊆ C, i = 1, . . . ,N} denotes the collection of the content
fragments each peer i has. The disjointness of contents from
peer i to peer j is denoted by ci \cj , which can be calculated
as:

ci \ cj = ci − (ci ∩ cj ), (1)

where \ denotes the intersection operation on sets. This dis-
jointness can be interpreted as the collection of content frag-
ments that peer i has but peer j does not. In other words,
it denotes the fragments that peer i can upload to peer j .
Moreover, the disjointness operation is not commutative,
i.e., ci \ cj �= cj \ ci . Let |ci \ cj | denote the cardinality of
ci \ cj , which is the number of content fragments peer i can
contribute to peer j . In order to maximize the disjointness
of content, we maximize the number of content fragments
each peer can contribute to its neighbors by determining the
connections eij ’s. Define εij ’s to be sets such that εij = C if
eij = 1, and εij = ∅ (null set) otherwise.

In an overlay network, every node is a potential neighbor
of each other node since the network’s topology is a logical
one. So the full connection is an ideal solution for the peer’s
connectivity. For the networks, we have to consider some
constraints [21, 49]:

• based on the underlying network characteristics, i.e., de-
lay or capacity of actual links;

• based on location of data and services;
• based on the nodes’s capabilities of managing peers, e.g.,

the number of direct neighbors a node can maintain. some
peers are tied down since they possess relative more con-
tent fragments. This resource constraint can be indepen-
dent of the underlying network.

In the environment, the maximum number of each peer
need to be considered, i.e., each peer i will be connected to
a maximum of di neighbors, where di < N . Therefore we
have the following optimization problem:

max
E

N∑

j=1

∣∣∣∣∣

N⋃

i=1

(ci \ cj ) ∩ εij

∣∣∣∣∣ (2)

subject to
N∑

j=1

eij ≤ di for all i,

N∑

i=1

eij ≤ dj for all j .

(3)

4 Particle swarm heuristic for neighbor-selection

For applying the particle swarm algorithm successfully for
any problem, one of the key issues is how to map the prob-
lem solution to the particle space, which affects its feasibil-
ity and performance [51]. The constraint conditions have to
be satisfied, and the particle would search the solutions in
as efficient a search space as possible. In this section, a new
approach to the problem space mapping is depicted for par-
ticle swarm optimization with reference to the neighbor-
selection problem. For solving the problem, the upper half of
the peer-connection matrix through the undirected graph is
encoded to the particle’s position, which reduces the search
space dimension significantly. Since particle swarm shares
some common characteristics with P2P in the dynamic so-
cially environment, a multi-swarm interactive pattern is in-
troduce to match the corresponding mechanism. We ana-
lyze the dynamic characteristic of the single particle in the
swarm, and then illustrate theoretically the convergence of
our algorithm.

4.1 Algorithm design

Given a P2P state S = (N,C,M,f ), in which N is the num-
ber of peers, C is the entire collection of content fragments,
M is the maximum number of the peers which each peer
can connect steadily in the session, f is to goal the num-
ber of swap fragments, i.e. to maximize (2). It is to be noted
that the routing and connection between peers must satisfy
the constraint in (3) because of bandwidth, etc. To apply the
particle swarm algorithm successfully for the NS problem,
one of the key issues is the mapping of the problem solu-
tion into the particle space, which directly affects its fea-
sibility and performance. Usually, the particle’s position is
encoded to map each dimension to one directed connection
between peers, i.e. the dimension is N ∗ N . But the neigh-
bor topology in P2P networks is an undirected graph, i.e.
eij = eji for all i �= j , and eij ≡ 0 for all i = j . To re-
duce the space complexity, we set up a search space of D

dimension as N ∗ (N − 1)/2. Accordingly, each particle’s
position is represented as a binary bit string of length D.
Each dimension of the particle’s position maps one undi-
rected connection. The domain for each dimension is limited
to 0 or 1.

The particle swarm model consists of a swarm of par-
ticles, which are initialized with a population of random
candidate solutions. They move iteratively through the D-
dimension problem space to search the new solutions, where
the fitness f can be measured by calculating the number of
swap fragments in the potential solution. Each particle has
a position represented by a position-vector pi (i is the index
of the particle), and a velocity represented by a velocity-
vector vi . Each particle remembers its own best position
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so far in a vector p#
i , and its j th dimensional value is p#

ij .
The best position-vector among the swarm so far is then
stored in a vector p∗, and its j th dimensional value is p∗

j .
When the particle moves in a state space restricted to zero
and one on each dimension, the change of probability with
time steps is defined as follows:

P(pij (t) = 1)

= f (pij (t − 1), vij (t − 1),p#
ij (t − 1),p∗

j (t − 1)), (4)

where the probability function is

sig(vij (t)) = 1

1 + e−vij (t)
. (5)

At each time step, each particle updates its velocity and
moves to a new position according to (6) and (7):

vij (t) = wvij (t − 1) + c1r1(p
#
ij (t − 1) − pij (t − 1))

+ c2r2(p
∗
j (t − 1) − pij (t − 1)), (6)

pij (t) =
{

1 if ρ < sig(vij (t)),

0 otherwise,
(7)

where c1 is a positive constant, called as coefficient of the
self-recognition component, c2 is a positive constant, called
as coefficient of the social component. r1 and r2 are the ran-
dom numbers in the interval [0,1]. The variable w is called
as the inertia factor, which value is typically setup to vary
linearly from 1 to near 0 during the iterated processing.
ρ is random number in the closed interval [0,1]. From (6),
a particle decides where to move next, considering its cur-
rent state, its own experience, which is the memory of its
best past position, and the experience of its most successful
particle in the swarm. The particle has a priority levels ac-
cording to the order of peers. The sequence of the peers will
be not changed during the iteration. Each particle’s position
indicates the potential connection state.

The particle swarm algorithm can be described gener-
ally as a population of vectors whose trajectories oscillate
around a region which is defined by each individual’s pre-
vious best success and the success of some other particle.
Some previous studies have discussed the trajectory of parti-
cles and its convergence [52–55]. It has been shown that the
trajectories of the particles oscillate as different sinusoidal
waves and converge quickly, sometimes prematurely. Vari-
ous methods have been used to identify some other parti-
cle to influence the individual. Eberhart and Kennedy called
the two basic methods as “gbest model” and “lbest model”
[56]. In the gbest model, the trajectory for each particle’s
search is influenced by the best point found by any member
of the entire population. The best particle acts as an attrac-
tor, pulling all the particles towards it. Eventually all parti-
cles will converge to this position. In the lbest model, par-
ticles have information only of their own and their nearest

array neighbors’ best (lbest), rather than that of the whole
swarm. Namely, in (6), gbest is replaced by lbest in the
model. The lbest model allows each individual to be influ-
enced by some smaller number of adjacent members of the
population array. The particles selected to be in one subset
of the swarm have no direct relationship to the other par-
ticles in the other neighborhood. Typically lbest neighbor-
hoods comprise exactly two neighbors. When the number
of neighbors increases to all but itself in the lbest model,
the case is equivalent to the gbest model. Some experiment
results testified that gbest model converges quickly on prob-
lem solutions but has a weakness for becoming trapped in lo-
cal optima, while lbest model converges slowly on problem
solutions but is able to “flow around” local optima, as the
individuals explore different regions [57]. Some related re-
search and development during the recent years are reported
in [58–61].

As mentioned above, one of the most important appli-
cations is to share files, distribute content in corporate net-
works by the dynamic membership of peer hosts. Those
users usually share some common interests in some virtual
spaces. They are apt to cluster into different groups. Some-
time they are also the members of several groups at the
same time [62]. To match the social characteristics, we intro-
duce a multi-swarm search algorithm for neighbor-selection
problem in P2P networks. In the algorithm, all particles are
clustered spontaneously into different sub-swarms of the
whole swarm. Every particle can connect more than one
sub-swarm, and a crossover neighborhood topology is con-
structed between different sub-swarms. The particles in the
same sub-swarm would carry some similar functions as pos-
sible and search their optimal. Each sub-swarm would ap-
proach to its appropriate position (solution), which would be
helpful for the whole swarm to keep in a good balance state.
Figure 1 illustrates a multi-swarm topology. In the swarm
system, a swarm with 30 particles is organized into 10 sub-
swarms, which one consists of 5 particles. Particles 3 and 13
have the maximum membership level, 3. During the iterated
process, the particle updates its velocity following by the lo-
cation of the best fitness achieved so far by the particle itself
and by the location of the best fitness achieved so far across
all its neighbors in all sub-swarms it belongs to. The process
makes an important influence on the particles’ ergodic and
synergetic performance.

Since the positions of all the particles indicate the po-
tential assigned solutions, the binary bit strings of length L

can be “decoded” to the feasible solution. “1” denotes the
two corresponding peers are selected in the neighborhood.
On the contrary, “0” denotes the two corresponding peers
are disconnected. The position may violate the constraint
(3) after some iterations. We scan each column and row be-
fore the decoding procedure. The latest binary bits are set
to “0” if

∑N
j=1 eij > di or

∑N
i=1 eij > dj . The scan direc-
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Fig. 1 A multi-swarm topology

tion are reversed after each scan. The pseudo-code for the
multi-swarm search algorithm is illustrated as follows:

Step 1 Initialize the size of the particle swarm n, and other
parameters. Initialize the positions and the velocities for
all the particles randomly.

Step 2 Multiple sub-swarms n are organized into a cross-
over neighborhood topology. A particle can join more than
one sub-swarm. Each particle has the maximum member-
ship level l, and each sub-swarm accommodates default
number of particles m.

Step 3 Decode the positions and evaluate the fitness for
each particles.

3.01 For s = 1 to n

3.02 If (reverse)
3.03 For i = 0 to N − 1
3.04 e = 0
3.05 For j = 0 to N − 1
3.06 If (j == i) eij = 0;
3.07 If (j < i) a = j ;b = i;
3.08 If (j > i) a = i;b = j ;
3.09 If (e > dj ) p[a∗N+b−(a+1)∗(a+2)/2] = 0
3.10 else
3.11 If (p[a∗N+b−(a+1)∗(a+2)/2]),
3.12 Calculate ci \ cj ; e + +;}
3.13 End if
3.14 Next j

3.15 Next i

3.16 else
3.17 For i = N − 1 to 0
3.18 e = 0
3.19 For j = N − 1 to 0
3.20 If (j == i) eij = 0;

3.21 If (j < i) a = j ;b = i;
3.22 If (j > i) a = i;b = j ;
3.23 If (e > dj ) p[a∗N+b−(a+1)∗(a+2)/2] = 0
3.24 else
3.25 If (p[a∗N+b−(a+1)∗(a+2)/2]),
3.26 Calculate ci \ cj ; e + +;}
3.27 End if
3.28 Next j

3.29 Next i

3.30 End if
3.31 Calculate f = f + |⋃N

i=1(ci \ cj ) ∩ εij |;
3.32 If (rand(0,1) < 0.5) reverse = 0
3.33 else reverse = 1;
3.34 Next s

Step 4 Find the best particle in the swarm, and find the best
one in each sub-swarms. If the “global best” of the swarm
is improved, noimprove = 0, otherwise, noimprove = 1.
Update velocity and position for each particle at the itera-
tion t .

4.01 For m = 1 to subs
4.02 p∗ = arg minsubsm

i=1 (f (p∗(t − 1)), f (p1(t)),

4.02 f (p2(t)), . . . , f (pi (t)), . . . , f (psubsm(t)));
4.03 For ss = 1 to subsm

4.04 p#
i (t) = arg min(f (p#

i (t − 1)), f (pi (t));
4.05 For d = 1 to D

4.06 Update the d th dimension value of pi and vi

4.06 according to (6) and (7);
4.07 Next d

4.08 Next ss

4.09 Next m

Step 5 If noimprove = 1, goto Step 2, the topology is re-
organized. If the end criterion is not met, goto Step 3. Oth-
erwise, output the best solution, the fitness.

4.2 Convergence analysis of multi-swarm algorithm

For analyzing the convergence of the multi-swarm algo-
rithm, we first introduce the definitions and lemmas [63–65],
and then theoretically prove that the algorithm converges
with a probability 1 or strongly towards the global optimal.

Xu et al. [66] analyzed the search capability of an al-
gebraic crossover through classifying the individual space
of genetic algorithms, which is helpful to comprehend the
search of genetic algorithms such that premature conver-
gence and deceptive problems [67] could be avoided. In
this subsection, we also attempt to theoretically analyze the
performance of the multi-swarm algorithm with crossover
neighborhood topology. For the sake of convenience, let
crossover operator |c denote the wheeling-round-the-best-
particles process.

Consider the problem (P ) as

(P ) = min{f (x) : x ∈ H }, (8)
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where x = (x1, x2, . . . , xn)
T , f (x) : H → R is the objective

function and H is a compact Hausdorff space. Applying our
algorithm the problem (P ), it can be transformed to P ′ as

(P ′) =
{

minf (x),

x ∈ Ω = [0,1]n, (9)

where Ω is the set of feasible solutions of the problem.
A swarm is a set, which consists of some feasible solu-
tions of the problem. Assume S as the encoding space of H .
A neighborhood function is a mapping N : Ω → 2Ω , which
defines for each solution S ∈ Ω a subset N (S) of Ω , called
a neighborhood. Each solution in N (S) is a neighbor of S.
A local search algorithm starts off with an initial solution
and then continually tries to find better solutions by search-
ing neighborhoods [68]. Most generally said, in swarm algo-
rithms the encoding types S of particles in the search space
H are often represented as strings of a fixed-length L over
an alphabet. Without loss of generality, S can be described
as

S = zm × · · · × zm︸ ︷︷ ︸
L

, (10)

where zm is a finite field about integer number modm. Most
often, it is the binary alphabet, i.e. m = 2.

Proposition 1 If k alleles are ‘0’s in the nontrivial ideal Ω ,
i.e. L − k alleles are uncertain, then θΩ partitions Ω into
2k disjoint subsets as equivalence classes corresponding to
Holland’s schema theorem [69, 70], i.e., each equivalence
class consists of some ‘1’s which k alleles in Ω with ‘0’ are
replaced by ‘1’s. Let A ∈ S/θΩ , then there is an minimal
element m of A under partial order (S,∨,∧,¬), such that
A = {m ∨ x | x ∈ Ω}.

Theorem 1 Let A, B , C are three equivalence classes on
θΩ , where θΩ is the congruence relation about Ω . ∃x ∈ A,
y ∈ B , and x |c y ∈ C, then C = {x |c y | x ∈ A,y ∈ B}.

Proof Firstly, we verify that for any d1, d2 ∈ Ω , if
x |c y ∈ C, then (x ∨ d1) |c (y ∨ d2) ∈ C. In fact,

(x ∨ d1) |c (y ∨ d2) = (x ∨ d1)c ∨ (y ∨ d2)c̄

= (xc ∨ yc̄) ∨ (d1c ∨ d2c̄)

= (x |c y) ∨ (d1c ∨ d2c̄). (11)

Obviously, (d1c ∨ d2c̄) ∈ Ω , so (x ∨ d1) |c (y ∨ d2) ≡
(x |c y)(mod θΩ), i.e. (x ∨ d1) |c (y ∨ d2) ∈ Ω .

Secondly, from Proposition 1, ∃m,n,d3, d4 ∈ Ω of A,B ,
such that x = m ∨ d3, y = n ∨ d4. As a result of analysis
in (11), x |c y ≡ (m |c n)(mod θΩ), i.e., m |c n ∈ C.

Finally, we verify that m |c n is a minimal element of C

and (m |c n)∨d = (m∨d) |c (n∨d). As a result of analysis

in (11), if d1 = d2 = d , then m |c n∨ d = (m∨ d) |c (n∨ d).
Therefore m |c n is a minimal element of C.

To conclude, C = {(m |c n) ∨ d | d ∈ Ω} = {x |c y | x ∈
A,y ∈ B}. The theorem is proven. �

Proposition 2 Let A, B are two equivalence classes on θΩ ,
and there exist x ∈ A, y ∈ B , such that x |c y ∈ C, then,
x |c y makes ergodic search C while x and y make ergodic
search A and B , respectively.

Definition 1 (Convergence in terms of probability) Let ξn a
sequence of random variables, and ξ a random variable, and
all of them are defined on the same probability space. The
sequence ξn converges with a probability towards ξ if

lim
n→∞P(|ξn − ξ | < ε) = 1 (12)

for every ε > 0.

Definition 2 (Convergence with a probability of 1) Let ξn a
sequence of random variables, and ξ a random variable, and
all of them are defined on the same probability space. The
sequence ξn converges almost surely or almost everywhere
or with probability of 1 or strongly towards ξ if

P

(
lim

n→∞ ξn = ξ

)
= 1; (13)

or

P

( ∞⋂

n=1

⋃

k≥n

[|ξn − ξ | ≥ ε]
)

= 0 (14)

for every ε > 0.

Theorem 2 Let x∗ is the global optimal solution to the
problem (P ′), and f ∗ = f (x∗). Assume that the clubs-
based multi-swarm algorithm provides position series xi (t)

(i = 1,2, . . . , n) at time t by the iterated procedure. p∗ is
the best position among all the swarms explored so far, i.e.

p∗(t) = arg min
1≤i≤n

(f (p∗(t − 1)), f (pi (t))). (15)

Then,

P

(
lim

t→∞f (p∗(t)) = f ∗
)

= 1. (16)

Proof Let

H0 = {x ∈ Ω|f (x) − f ∗ < ε},
H1 = Ω \ H0,

(17)

for every ε > 0.



204 A. Abraham et al.

While the different swarm searches their feasible solu-
tions by themselves, assume Δp is the difference of the par-
ticle’s position among different club swarms at the itera-
tion time t . Therefore 0 ≤ Δp ≤ 1. Rand(−1,1) is a nor-
mal distributed random number within the interval [−1,1].
According to the update of the velocity and position by (6)–
(7), Δp belongs to the normal distribution, i.e. Δp ∼ [0,1].
During the iterated procedure from the time t to t + 1, let
qij denote that x(t) ∈ Hi and x(t + 1) ∈ Hj . Accordingly
the particles’ positions in the swarm could be classified into
four states: q00, q01, q10 and q01. Obviously q00 + q01 = 1,
q10 + q11 = 1. According to Borel-Cantelli Lemma and Par-
ticle State Transference [60], proving by the same methods,
q01 = 0; q00 = 1; q11 ≤ c ∈ (0,1) and q10 ≥ 1 − c ∈ (0,1).

For ∀ε > 0, let pk = P {|f (p∗(k)) − f ∗| ≥ ε}, then

pk =
{

0 if ∃T ∈ {1,2, . . . , k}, p∗(T ) ∈ H0,

p̄k if p∗(t) /∈ H0, t = 1,2, . . . , k.
(18)

According to Particle State Transference Lemma,

p̄k = P {p∗(t) /∈ H0, t = 1,2, . . . , k} = qk
11 ≤ ck. (19)

Hence,

∞∑

k=1

pk ≤
∞∑

k=1

ck = c

1 − c
< ∞. (20)

According to Borel-Cantelli Lemma,

P

( ∞⋂

t=1

⋃

k≥t

|f (p∗(k)) − f ∗| ≥ ε

)
= 0. (21)

As defined in Definition 2, the sequence f (p∗(t)) converges
almost surely or almost everywhere or with probability 1 or
strongly towards f ∗. The theorem is proven. �

5 Algorithm performance demonstration

To illustrate the effectiveness and performance of the parti-
cle swarm optimization algorithm, we illustrate an execution
trace of the algorithm for the NS problem. A file of size 7
MB is divided into 14 fragments (512 KB each) to distribute,
6 peers download from the P2P networks, and the connect-
ing maximum number of each peer is 3, which is represented
as (6,14,3) problem. In some session, the state of distrib-
uted file fragments is as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 4 0 6 7 8 0 10 0 12 0 14
0 0 0 4 5 0 7 0 9 0 11 0 13 0
0 2 0 0 0 6 0 0 0 0 11 12 0 14
0 2 3 4 0 6 0 0 0 0 11 0 0 0
0 2 0 0 0 0 7 8 0 10 0 12 0 14
1 2 0 0 5 0 0 0 9 10 11 0 13 14

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

The optimal result search by the multi-swarm algorithm
is 31, and the neighbor selection solution is illustrated be-
low:

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 0 0 0 1 1 1
2 0 0 0 0 1 1
3 0 0 0 1 1 1
4 1 0 1 0 0 0
5 1 1 1 0 0 0
6 1 1 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

We also tested other three representative instances
(problem (25,1400,12), problem (30,1400,15), problem
(35,1400,17) and problem (100,1400,20)) further. In
our experiments, the algorithms used for comparison were
mainly SPSO (standard PSO) (56) and GA (genetic algo-
rithm) [71]. These algorithms share many similarities. GA
is powerful stochastic global search and optimization meth-
ods, which are also inspired from the nature like the PSO.
Genetic algorithms mimic an evolutionary natural selection
process. Generations of solutions are evaluated according to
a fitness value and only those candidates with high fitness
values are used to create further solutions via crossover and
mutation procedures. Both methods are valid and efficient
methods in numeric programming and have been employed
in various fields due to their strong convergence properties.
The considered algorithms were repeated 4 times with dif-
ferent random seeds. Each trial had a fixed number of 50 or
80 iterations. Other specific parameter settings of the algo-
rithms are described in Table 1, where H is the dimension
of the position. The average fitness values of the best so-
lutions throughout the optimization run were recorded. The
average and the standard deviation were calculated from the
4 different trials.

Figures 2, 3, 4 and 5 illustrate the performances dur-
ing the search processes using the considered algorithms
to solve the NS problems. The best values, mean values,
the standard deviations for 4 trials are shown in Table 2.
As evident, the multi-swarm algorithm obtained better re-
sults much faster than other algorithms, especially for large

Table 1 Parameter settings for the algorithms

Algorithm Parameter name Value

Size of the population (even)(int)(10 + 2 ∗ sqrt(H))

GA Probability of crossover 0.8

Probability of mutation 0.01

Swarm size (even)(int)(10 + 2 ∗ sqrt(H))

Self coefficient c1 0.5 + log(2)

PSO(s) Social coefficient c2 0.5 + log(2)

Inertia weight w 0.91

Clamping Coefficient ρ 0.5
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Fig. 2 Performance for the NS (25,1400,12)

Fig. 3 Performance for the NS (30,1400,15)

Fig. 4 Performance for the NS (35,1400,17)

Fig. 5 Performance for the NS (100,1400,20)

Table 2 Performance comparison of the three algorithms

Instance Item GA SPSO MPSO

(25,1400,12) Best 8716.00 8717.00 8721.00

Mean 8.714.30 8716.00 87192.00

Std. dev. 1.7078 1.1547 1.3292

(30,1400,15) Best 10513.00 10514.00 10515.00

Mean 10504.00 10512.00 10514.00

Std. dev. 6.3443 1.2990 1.2910

(35,1400,17) Best 12321.00 12332.00 12332.00

Mean 12319.00 12329.00 12330.00

Std. dev. 1.7078 2.5166 1.1690

(100,1400,20) Best 35047.00 35057.00 35061.00

Mean 35042.25 35055.00 35059.25

Std. dev. 3.6996 1.2247 1.0897

scale problems. The multi-swarm algorithm offered the ad-
vantages of steady performance, since it has the least stan-
dard deviations.

6 Conclusion

In this paper, we investigated to solve the class of the
neighbor-selection problem in peer-to-peer networks by us-
ing a swarm intelligence approach. We encoded the particles
using the upper half matrix of the peer connection through
the undirected graph, through which we accomplished the
mapping between the problem and the particle. It is feasible
to reduce the dimension of the particle’s search space. Since
particle swarm shares some common characteristics with
P2P in the dynamic socially environment, a multi-swarm in-
teractive pattern was introduced to match the corresponding
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mechanism. We designed a crossover neighborhood multi-
swarm algorithm based on discrete particle swarm optimiza-
tion for the neighbor-selection problem in peer-to-peer net-
works. We analyzed the dynamic characteristic of the sin-
gle particle in the swarm. The multi-swarm algorithm per-
formance was illustrated theoretically that it converges with
a probability of 1 towards the global optimum. We evalu-
ated the performance of the proposed approach and com-
pared it with genetic algorithm (GA) and SPSO (standard
PSO). The results indicated that multi-swarm approach usu-
ally obtained better results much faster than GA and SPSO,
specially for large scale problems and the multi-swarm al-
gorithm offered the advantages of steady performance. The
crossover neighborhood multi-swarm algorithm could be an
ideal approach for solving the neighbor-selection problem
in peer-to-peer networks. Compared to the previous algo-
rithms proposed in P2P file sharing systems, the proposed
algorithm has a low communication overhead.
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