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Abstract
Stochastic (or probabilistic) programming (SP) is an optimization technique in which the constraints and/or the objective
function of an optimization problem contain random variables. The mathematical models of these problems may follow any
particular probability distribution for model coefficients. The objective here is to determine the proper values for model
parameters influenced by random events. In this study, two modified differential evolution (DE) algorithms namely, LDE1
and LDE2 are used for solving SP problems. Two models of SP problems are considered; Stochastic Fractional Programming
Problems and Multiobjective Stochastic Linear Programming Problems. The numerical results obtained by the LDE algorithms
are compared with the results of basic DE, basic particle swarm optimization (PSO) and the available results from where it
is observed that the LDE algorithms significantly improve the quality of solution of the considered problem in comparison
with the quoted results in the literature.

Keywords: Differential evolution, stochastic programming, fractional programming, multiobjective optimization.

1 Introduction

Stochastic programming (SP) is a mathematical programming where stochastic element is present
in the data. In contrast to deterministic mathematical programming where the data (coefficients) are
known numbers, in SP these numbers follow a probability distribution. Thus, we can say that SP
is a framework for modelling optimization problems that involve uncertainty. The goal here is to
find some policy that is feasible for all (or almost all) the possible data instances and maximizes
the expectation of some function of the decisions and the random variables. More generally, such
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2 Solving SP problems using DE algorithms

models are formulated, solved analytically or numerically and analysed in order to provide useful
information to the decision-maker. SP has applications in a broad range of areas such as finance,
transportation, energy optimization, etc. [4, 10, 13, 17].

SP provides a general framework to model path dependence of the stochastic process within an
optimization model. Furthermore, it permits uncountably many states and actions, together with
constraints, time lags, etc. One of the important distinctions that should be highlighted here is that
unlike deterministic programming, SP separates the model formulation activity from the solution
algorithm. An advantage of this separation is that it is not necessary for all SP models to obey the
same mathematical assumptions. This leads to a rich class of models for which a variety of algorithms
can be developed. On the other hand, SP formulations can lead to very large scale problems, and
methods based on approximation and decomposition become paramount [16].

In the recent past, SP has been also applied to the problems having multiple, conflicting and non-
commensurable objectives where generally there does not exist a single solution that can optimize all
the objectives. Several methods for solving Multiobjective Stochastic Linear Programming (MOSLP)
problems and their applications to various fields are available in literature [1–3, 7, 11, 12, 21]. Most
of the probabilistic models assume normal distribution for model coefficients. Sahoo and Biswal
[15] presented some deterministic equivalents for the probabilistic problems involving normal and
log-normal random variables for joint constraints. Charles et al. [6] addressed different forms of
distributions like Power Function distribution, Pareto distribution, Beta distribution of first kind,
Weibull distribution and Burr type XII distribution.

In the present study, we have considered two types of SP problems. They are: (i) Stochastic
Fractional Programming Problems (SFPPs) (ii) MOSLP problems. For SFPP, we have followed the
models proposed by Charles and Dutta [8] and for MOSLP, the model proposed by Charles et al. [6]
is followed. The aforesaid problems are solved using modified differential evolution (DE) algorithm
called Laplace Differential Evolution (LDE), based on Laplace distribution; two versions of LDE
algorithms (LDE1 and LDE2) are used in this study. The LDE algorithms are proposed by Thangaraj
et al. [22] and analysed with standard benchmark problems and real-life problems. Encouraged by
its performance, in the present study we have used the LDE algorithms for solving two SP models.
The results obtained by LDE algorithms are compared with basic versions of DE and PSO and also
with the results quoted in the literature [6, 8].

The rest of the article is organized as follows: Section 2 briefly describes the basic DE, LDE1 and
LDE2 algorithms. The problem definitions are given in Section 3. In Section 4, the experimental
settings and numerical results are discussed. Finally, the article concludes with Section 5.

2 DE algorithms

DE algorithm was developed by Storn and Price [19] in 1995. It is a novel evolutionary approach
capable of handling non-differentiable, non-linear and multimodal objective functions. DE has been
designed as a stochastic parallel direct search method, which utilizes the concepts borrowed from
the broad class of Evolutionary Algorithms (EAs). It typically requires few, easily chosen control
parameters. Experimental results have shown that the performance of DE is better than many other
well-known EAs [18, 20]. While DE shares similarities with other EAs, it differs significantly in the
sense that in DE, distance and direction information is used to guide the search process [9]. In this
section, we give a brief introduction to the basic DE algorithm and its two modified versions LDE1
and LDE2.
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Solving SP problems using DE algorithms 3

2.1 Basic DE

A general DE variant may be denoted as DE/X/Y/Z, where X denotes the vector to be mutated, Y
specifies the number of difference vectors used and Z specifies the crossover scheme which may be
binomial (bin) or exponential (exp). Throughout the study, we shall consider the mutation strategy
DE/rand/1/bin [19] which is perhaps the most frequently used version of DE. The operators used in
this particular scheme are described as follows:

2.1.1 Mutation
For a D-dimensional search space, each target vector Xi,g , a mutant vector Vi,g is generated by

Vi,g+1 =Xr1 ,g +F ∗(Xr2 ,g −Xr3 ,g) (1)

where r1,r2,r3 ∈{1,2,...,NP} are randomly chosen integers, different from each other and also
different from the running index i.

F(>0) is a scaling factor which controls the amplification of the DE (Xr2 ,g −Xr3 ,g).

2.1.2 Crossover
Once the mutation phase is over, crossover is performed between the target vector and the mutated
vector to generate a trial point for the next generation. Crossover is introduced to increase the diver-
sity of the population [20]. The mutated individual, Vi,g+1 = (v1,i,g+1, ... ,vD,i,g+1), and the current
population member, Xi,g = (x1,i,g, ... ,xD,i,g), are then subject to the crossover operation, that finally
generates a population of candidate solutions or ‘trial’ vectors, Ui,g+1 = (u1,i,g+1, ... ,uD,i,g+1), as
follows:

uj,i,g+1 =
{

vj,i,g+1 if randj ≤Cr ∨j= jrand

xj,i,g+1 otherwise
(2)

where j=1,2, ... ,D; randj ∈[0,1];
Cr is the called the crossover constant and it takes values in the range [0, 1] jrand ∈ (1,2,...,D) is

a randomly chosen index.

2.1.3 Selection
The final phase of DE algorithm is selection. Here, the population for the next generation is selected
from the individual in current population and its corresponding trial vector according to the follow-
ing rule:

Xi,g+1 =
{

Ui,g+1 if f (Ui,g+1) ≤ f (Xi,g)

Xi,g otherwise
(3)

Thus, each individual of the advance (trial) population is compared with its counterpart in the current
population. The one with the lower objective function value will survive the tournament selection
to form the population for the next generation. As a result, all the individuals of the next generation
are as good as or better than their counterparts in the current generation.
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4 Solving SP problems using DE algorithms

2.2 LDE

The LDE algorithms proposed by Thangaraj et al. [22] are simple and modified version of the basic
DE algorithm. First, the LDE schemes make use of the absolute weighted difference between the two
vector points which is in contrast to the basic DE, where the usual vector difference is considered.
Secondly, in LDE schemes the amplification factor, F (of the usual DE), is replaced by L, a random
variable following Laplace distribution.

The Probability Density Function (pdf) of Laplace distribution is similar to that of normal dis-
tribution; however, the normal distribution is expressed in terms of squared difference from the
mean while Laplace density is expressed in terms of absolute difference from the mean. The density
function of Laplace distribution is given as:

f (x/θ)= 1

2µ
exp

(−|x−θ|
µ

)
, −∞≤x≤∞ (4)

Its distribution function is given by:

== 1

2µ

⎧⎨
⎩

exp
(
− x−θ

µ

)
if x≤θ

1−exp
(
− θ−x

µ

)
if x>0

(5)

µ>0 is the scale parameter.
The mutation schemes of LDE1 and LDE2 algorithms are defined as follows:

(i) LDE1 scheme

vi,g+1 =xbest,g +L∗|xr1,g −xr2,g| (6)

In LDE1 scheme, the base vector is the one having the best fitness function value; whereas, the
other two individuals are randomly selected.

(ii) LDE2 scheme
If (U (0,1)<0.5) then vi,g+1 =xbest,g +L∗|xr1,g −xr2,g|
Else vi,g+1 =xr1 ,g +F ∗(xr2 ,g −xr3 ,g)

In LDE2 scheme, mutant vector using Equation (6) and the basic mutant vector equation are applied
probabilistically using a predefined value. A random variable following normal distribution U (0, 1)
is generated. If it is less than 0.5, then LDE1 scheme is applied otherwise Equation (1) is applied.

From the above said schemes, it can be seen that the newly generated mutant vector will lie in the
vicinity of the base vector. However, its nearness or distance from base vector will be controlled by L.

For smaller values of L, the mutant vector is likely to be produced near the initially chosen vector,
whereas for larger values of L, the mutant vector is more likely to be produced at a distance from
the chosen vector. This behaviour makes the algorithm self-adaptive in nature.

Both the modified versions, LDE1 and LDE2, have given good performances for solving bench-
mark as well as real-life problems [22].

3 Problem definition

This section is divided into two subsections; in Section 3.1, the problem formulation of linear SFPPs
is given and the general model of the multiobjective SP problems with two test examples is given
in Section 3.2.
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Solving SP problems using DE algorithms 5

3.1 Linear Stochastic Fractional Programming Model

A linear stochastic fractional programming (LSFP) problem involves optimizing the ratio of two
linear functions subject to some constraints in which at least one of the problem data is random in
nature with non-negative constraints on the variables. Additionally, some of the constraints may be
deterministic [5]. The LSFP framework attempts to model uncertainty in the data by assuming that
the input or a part thereof is specified by a probability distribution, rather than being deterministic.
The problem of optimizing sum of more than one ratios of function is called stochastic sum-of-
probabilistic fractional programming (SSFP) problem when the data under study are random in
nature. The following section gives the general model of the SSFP problems.

3.1.1 General Model of SSFP problem
The mathematical model of a stochastic SSFP problem can be expressed as follows [8]:

Max
x∈S

R(X )=
k∑

y=1

Ry(X ),

where Ry(X )= Ny(X )+αy

Dy(X )+βy
, y=1,2,...,k

Subject to:

P

⎛
⎝ n∑

j=1

tijxj ≤b(1)
i

⎞
⎠≥1−p(1)

i , i=12,...,m; (7)

n∑
j=1

tijxj ≤b(2)
i , i=m+1,...,h (8)

where 0≤Xnx1 =∥∥xj

∥∥⊂Rn is a feasible set and R :Rn →Rk ,

Tmxn =
∥∥∥t(1)

ij

∥∥∥,

b(1)
mx1 =

∥∥∥b(1)
i

∥∥∥, i=1,2,...,m, j=1,2,...,n;
b(2)

h−(m+1)x1 =
∥∥∥b(2)

i

∥∥∥, i=m+1,...,h; αy, βy are scalars.

Ny(X )=
n∑

j=1

cyjxj and Dy(X )=
n∑

j=1

dyjxj.

In this model, out of Ny(X ), Dy(X ), T and b(1) at least one may be a random variable.
S ={X |Equation (7)−(8), X ≥0, X ⊂Rn} is non-empty, convex and compact set in Rn.

3.1.2 Test Example 1 (SSFP1)

Max R(X )=
2∑

y=1

cy1x1 +cy2x2 +αy

dy1x1 +dy2x2 +βy
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6 Solving SP problems using DE algorithms

Subject to: a11x1 +a12x2 ≤1, a21x1 +a22x2 ≤b2, 16x1 +x2 ≤4, x1,x2 ≥0
The deterministic model of the above problem may be given as:

Max λ1 +λ2

Subject to: (λ1 +2λ2 −5)x1 +(λ1 +3λ2 −4)x2 +2λ1 +4λ2 +1.28
√

x2
1 +x2

2 ≤3,
(2x1 +x2)+1.645

√
x2

1 +x2
2 ≤1, (3x1 +4x2)+0.84

√
2x2

1 +3x2
2 +2≤3, 16x1 +x2 ≤4, x1,x2,λ1,λ2 ≥0.

3.1.3 Test example 2 (SSFP2)

Max R(X )=
3∑

y=1

cy1x1 +cy2x2 +αy

dy1x1 +dy2x2 +βy

Subject to: a11x1 +a12x2 ++a13x3 ≤b1, a31x1 +a32x2 +a33x3 ≤20, x1 +x2 +x3 ≤b3,

5x1 +3x2 +4x3 ≤15, x1,x2,x3 ≥0

The deterministic model of the above problem is:

Max λ1 +λ2 +λ3

Subject to:

(λ1 +2λ2 +4λ3 −17)x1 +(λ1 +λ2 +3λ3 −19)x2 +(λ1 +4λ2 +7λ3 −23)x3 +2λ1 +10λ2 +5λ3

+1.645
√

(λ2
2 +0.5λ2

3)x
2
1 +(0.5λ2

2 +2λ2
3)x

2
2 +(2λ2

2 +3λ2
3)x

2
3 ≤12

4x1 +2x2 +4x3 +1.645
√

0.5x2
1 +0.25x2

2 +0.5x2
3 +0.25≤12,

6x1 +4x2 +6x3 +1.28
√

x2
1 +0.5x2

2 +0.75x2
3 ≤20, x1 +x2 +x3 ≤3.16,

5x1 +3x2 +4x3 ≤15, x1,x2,x3,λ1,λ2,λ3 ≥0.

3.1.4 Test example 3 (SSFP3)

Max R(X )=
2∑

y=1

cy1x1 +cy2x2 +αy

dy1x1 +dy2x2 +βy

Subject to: a11x1 +a12x2 ++a13x3 ≤27, 5x1 +3x2 +x3 ≤12, x1,x2,x3 ≥0
The deterministic model of the above problem is:

Max λ1 +λ2

Subject to:

(20−2λ1 −4λ2)x1 +(16−3λ1 −2λ2)x2 +(12−5λ1 −2λ2)x3 −10λ1 −12λ2

−1.28
√

(λ2
1 +λ2

2 +10)x2
1 +(2λ2

1 +λ2
2 +4)x2

2 +(3λ2
1 +2λ2

2 +5)x2
3 ≥3

3x1 +4x2 +8x3 +1.645
√

2x2
1 +x2

2 +x2
3 ≤27, 5x1 +3x2 +x3 ≤12, x1,x2,x3,λ1,λ2 ≥0.

For more details on the above examples, please refer [8].
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Solving SP problems using DE algorithms 7

3.2 MOSLP

The mathematical model of the MOSLP problem used in the present study is given in the following
subsection.

3.2.1 General Model
The general mathematical model of a constrained MOSLP may be given as [6]:

Maximize zk =
n∑

j=1

ck
j xj, k =1,2,...,K

Subject to

P

⎛
⎝ n∑

j=1

a1jxj ≤b1,

n∑
j=1

a2jxj ≤b2,...,

n∑
j=1

amjxj ≤bm

⎞
⎠≥p,xj ≥0,j=1,2,...,n

where 0<p<1 is usually close to 1. It has been assumed that the parameters aij and cj are deter-
ministic constants and bi are random variables. For more details, the interested reader may please
refer to [6].

3.2.2 Test example 1(MOSLP1)

Maximize z1 =5x1 +6x2 +3x3, Maximize z2 =6x1 +3x2 +5x3,

Maximize z3 =2x1 +5x2 +8x3

Subject to

P(3x1 +2x2 +2x3 ≤b1)≥0.90, P(2x1 +8x2 +5x3 ≤b2)≥0.98, P(5x1 +3x2 +2x3 ≤b3)≥0.95,

P(0.5x1 +0.5x2 +0.25x3 ≤b4)≥0.90, P(8x1 +3x2 +4x3 ≤b5)≥0.99, x1,x2,x3 ≥0

Here, b1 follow Power Function distribution, b2 follow Pareto distribution, b3 follow Beta distribu-
tion, b4 follow Weibull distribution; b5 follow Burr type XII distribution. The problem is converted
to deterministic model as follows:

Maximize z=λ1(5x1 +6x2 +3x3)+λ2(6x1 +3x2 +5x3)+λ3(2x1 +5x2 +8x3)

Subject to

3x1 +2x2 +2x3 ≤6.3096, 2x1 +8x2 +5x3 ≤8.0812, 5x1 +3x2 +2x3 ≤4.7115,

0.5x1 +0.5x2 +0.25x3 ≤0.9379, 8x1 +3x2 +4x3 ≤10.0321, λ1 +λ2 +λ3 =1

x1,x2,x3,λ1,λ2,λ3 ≥0
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8 Solving SP problems using DE algorithms

3.2.3 Test example 2 (MOSLP2)

Maximize z1 =3x1 +8x2 +5x3, Maximize z2 =7x1 +4x2 +3x3

Maximize z3 =6x1 +7x2 +10.5x3

Subject to

P(5x1 +4x2 +2x3 ≤b1)≥0.95, P(7x1 +3x2 +x3 ≤b2)≥0.95,P(2x1 +7x2 +3x3 ≤b3)≥0.95,

P(2x1 +3x2 +2.5x3 ≤b4)≥0.95, P(5x1 +2x2 +1.5x3 ≤b5)≥0.95,

x1,x2,x3 ≥0

Here b1 follow Power Function distribution; b2 follow Pareto distribution; b3 follow Beta distribution
of first kind; b4 follow Weibull distribution and b5 follow Burr type XII distribution. The deterministic
model of the problem is given as:

Maximize z=λ1(3x1 +8x2 +5x3)+λ2(7x1 +4x2 +3x3)+λ3(6x1 +7x2 +10.5x3)

Subject to[
y2

1

9

][
y2

2 −100

y2
2

][
y3 −5

10

][
e2y4 −1

e2y4

][
3y2

5

1+3y2
5

]
≥0.95

5x1 +4x2 +2x3 =y1, 7x1 +3x2 +x3 =y2, 2x1 +7x2 +3x3 =y3, 2x1 +3x2 +2.5x3 =y4,

5x1 +2x2 +1.5x3 =y5, λ1 +λ2 +λ3 =1x1,x2,x3,y1,y2,y3,y4,y5,λ1,λ2,λ3 ≥0

4 Experimental settings and numerical results

4.1 Parameter settings

The three main control parameters of DE population size, crossover rate Cr and scaling factor F are
fixed as 50, 0.5 and 0.5, respectively. For LDE schemes, the scaling factor is a random variable, L,
following Laplace distribution. For each algorithm, the stopping criterion is to terminate the search
process when one of the following conditions is satisfied:

(i) the maximum number of generations is reached (assumed 1000 generations),
(ii) |fmax −fmin|<10−4 where f is the value of objective function.

Constraints are handled according to the approach based on repair methods suggested in [14].
A total of 50 runs for each experimental setting were conducted and the best solution throughout
the run was recorded as global optimum. Results obtained by the LDE versions are compared with
basic DE, basic PSO and also previously quoted results [6, 8].

To solve the given problems by PSO, we have adopted the following settings for its control param-
eters: inertia weight w: linearly decreasing from 0.9 to 0.4; acceleration coefficients c1 =c2 =2.0.

4.2 Numerical results

LDE schemes are compared with basic DE and basic PSO through various performance metrics like
average fitness function value and standard deviation (SD). To compare the convergence speed of
algorithms, we considered the average number of function evaluations (NFEs).
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Solving SP problems using DE algorithms 9

TABLE 1. Results of stochastic sum-of-fractional programming problems

DE LDE1 LDE2 PSO Results in [8]
SSFP1

F(x) 1.83245 1.83246 1.83246 1.83218 1.7533
R(X) 1.45685 1.45685 1.45687 1.45676 1.40035
x1 0.202128 0.20199 0.202329 0.20254 0.0602
x2 0.165738 0.165968 0.165426 0.164923 0.3292
λ1 1.83245 1.83246 1.83246 1.83218 1.7533
λ2 0 0 0 0 0
SD 1.2639e-5 1.2143e-5 1.2147e-5 0.120788 NA
Average NFE 15925 11790 5455 37269 NA

SSFP2
F(x) 15.2256 15.0329 15.2256 15.2231 15.1931
R(X) 5.29363 5.5283 5.30394 5.32662 5.29317
x1 0 0.0101852 0 0 0
x2 1.42539 1.76232 1.43882 1.46877 1.4248
x3 1.68131 1.3875 1.67478 1.65862 1.6816
λ1 15.2256 15.0329 15.2256 15.2231 15.1931
λ2 0 7.278e-8 7.268e-8 0 0
λ3 6.039e-7 5.641e-12 0 0 0
SD 1.4346e-5 1.2029e-5 1.1060e-5 1.06941 NA
Average NFE 38855 4540 10460 42352 NA

SSFP3
F(x) 2.32854 2.23663 2.33083 2.23657 3.6584
R(X) 3.41456 3.53474 3.59134 3.53478 3.5348
x1 1.88002 2.39981 1.781 2.4 2.4
x2 0.866625 0.00031 1.03165 0 0
x3 0 0 0 0 0
λ1 2.32854 2.23663 2.33083 2.23657 3.6584
λ2 2.095e-7 1.923e-6 0 0 0
SD 0.05265 0.03543 0.03305 0.335365 NA
Average NFE 5725 5350 4850 44656 NA

4.2.1 Results analysis of SSFP problems
Performance comparison of LDE algorithms with basic DE and basic PSO are given in Table 1
in terms of objective function value of deterministic model (F(X)), objective function value of
stochastic model (R(X)), decision variable values, standard deviation and average NFEs. From the
numerical results of Table 1, we can see that LDE algorithms are superior to the other algorithms. For
the first test problem SSFP1, the improvement percentage of LDE1 in terms of NFE in comparison
to DE and PSO are 25.9 and 68.36%, respectively, whereas the improvement % of LDE2 algorithm
in comparison to DE and PSO are 65 and 85.36%, respectively. Similarly for the remaining two
test problems also the LDE algorithms gave a noticeable percentage of improvement in terms of
objective function value and NFE in comparison to basic DE, PSO and the quoted results in the
literature. Figure 1 shows the performance of Laplace DE algorithm for all the SSFPs and MOSLPs
problems in terms of objective function values.

 by guest on F
ebruary 15, 2011

jigpal.oxfordjournals.org
D

ow
nloaded from

 

http://jigpal.oxfordjournals.org/


[11:01 8/2/2011 jzr017.tex] Paper Size: a4 paper Job: JIGPAL Page: 10 1–15

10 Solving SP problems using DE algorithms

FIG. 1. Performance of LDE, DE and PSO algorithms in terms of objective function value (a) for
SSFPs (b) for MOSLPs.

4.2.2 Results analysis of MOSLP problems
We have considered four test cases in each of the test problems MOSLP1 and MOSLP2. Since,
λ1 +λ2 +λ3 =1, one of λi, i=1,2,3 could be eliminated to reduce the number of dependent variables
from the expression of objective function. So, we assigned equal weights to two terms at a time in
the objective expression. The resultant test cases are as follows:

(i) λ1 =W ,λ2 =λ3 = 1−W
2 ,0≤W ≤1

(ii) λ2 =W ,λ1 =λ3 = 1−W
2 ,0≤W ≤1

(iii) λ3 =W ,λ1 =λ2 = 1−W
2 ,0≤W ≤1

(iv) λ1, λ2 and λ3 are dependent variables.

The numerical results of MOSLP1 and MOSLP2 are recorded in Tables 2 and 3, respectively.
The best solution obtained by LDE, DE and PSO algorithms for MOSLP1 in terms of optimal
decision variable values, objective function value, standard deviation and average NFEs is given in
Table 2. For the first three test cases, the LDE algorithms are superior to others in terms of objective
function value; if we compare the LDE algorithms with each other then from the results it can be
clear that LDE2 algorithm is better than LDE1 algorithm. For the test case (iv), the performance
of PSO is better than all the other algorithms in terms of objective function value. If we compare
the algorithms with respect to NFE, then from Table 2 it can be seen that LDE1 gave good result.
There is an improvement of 52% in objective function value when the problem is solved by LDE2
in comparison with the quoted result [6], where the problem is solved by Genetic Algorithm (GA).
Similarly the improvement % of LDE1 algorithm is 19.3%. The results of test problem MOSLP2 are
given in Table 3. From this table also we can see that LDE2 algorithm is superior with others in all
the test cases. The improvement of LDE2 algorithm in comparison with the results in the literature
is 141%. Figure 1 shows the performance of LDE, DE and PSO algorithms in terms of objective
function value.

5 Conclusions

SP is an optimization technique in which the constraints and/or the objective function of an opti-
mization problem contains certain random variables following different probability distributions. In
the present study, two models of SP problems were considered; (i) SFPPs and (ii) MOSLP Problems.
The test problems were solved using the modified DE algorithm called Laplace DE algorithm (LDE).
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TABLE 2. Results of MOSLP1

DE LDE1 LDE2 PSO GA [6]
λ1 =W , λ1 =λ2 = (1−W )/2, 0≤W ≤1

z 10.9905 10.996 10.997 10.9887 NA
z1 6.17418 6.18472 6.18566 6.18385
z2 9.47566 9.48721 9.48832 9.48557
z3 12.5077 12.5065 12.5068 12.5033
x1 0.349128 0.35171 0.351905 0.351792
x2 0 0 0 0
x3 1.47618 1.47539 1.47538 1.47496
SD 0.009314 0.001586 0.001135 0.224631
Average NFE 50050 50050 50050 50050

λ2 =W , λ1 =λ3 = (1−W )/2, 0≤W ≤1
z 9.48974 9.48975 9.48975 9.48963 NA
z1 6.18684 6.18686 6.18687 6.18679
z2 9.48975 9.48975 9.48977 9.48965
z3 12.5073 12.50726 12.5073 12.5072
x1 0.35214 0.35215 0.352142 0.352143
x2 0 0 0 0
x3 1.47538 1.47537 1.47538 1.47536
SD 0.000292 1.60188 0.723669 0.280235
Average NFE 50050 50050 49578 50050

λ3 =W , λ1 =λ2 = (1−W )/2, 0≤W ≤1
z 12.9277 12.9288 12.9292 12.9287 NA
z1 4.84834 4.84836 4.84851 4.84834
z2 8.08056 8.08059 8.08085 8.08057
z3 12.9289 12.929 12.9295 12.9289
x1 0 0 0 0
x2 0 0 0 0
x3 1.61611 1.61612 1.61617 1.61611
SD 0.009056 0.02954 0.01799 0.003374
Average NFE 50050 50050 50050 50050

Problem described as in [6]
z 9.48978 10.1553 12.0647 12.9299 8.5089
z1 6.18688 6.22744 6.12031 4.84872 6.4834
z2 9.48978 9.34841 9.39769 8.0812 8.3125
z3 12.5073 12.2764 12.4214 12.9299 10.5140
x1 0.352147 0.35354 0.344071 0 0.3727
x2 2.124e-7 0.0293907 0 0 0.2319
x3 1.47538 1.4278 1.46665 1.61624 1.0761
SD 2.06789 1.62183 1.95275 3.91715 NA
Average NFE 14691 6932 7250 20573 NA
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TABLE 3. Results of MOSLP2

DE LDE1 LDE2 PSO GA [6]
λ1 =W , λ1 =λ2 = (1−W )/2, 0≤W ≤1

z 5.5452 6.3844 6.86328 7.29299 NA
z1 4.60113 4.48698 4.56284 4.9091
z2 3.61702 4.0707 4.28202 4.36365
z3 9.25069 8.69822 9.4451 10.2273
x1 0.170342 0.275175 0.297729 0.272728
x2 0.0367932 0.0654974 0.00485206 0
x3 0.759151 0.627495 0.726168 0.818182
y1 2.5158 2.89285 2.96039 3.0
y2 2.06291 2.7502 2.82483 2.72728
y3 2.862 2.89131 2.80793 3.0
y4 2.36484 2.31558 2.42544 2.59091
y5 2.06754 2.44811 2.5876 2.59091
SD 1.61902 1.44067 1.4189 2.3473
Average NFE 50050 50050 50050 50050

λ2 =W , λ1 =λ3 = (1−W )/2, 0≤W ≤1
z 5.3215 7.01255 7.74695 7.72732 NA
z1 4.60113 4.71818 4.99999 4.99081
z2 3.61702 3.42226 3.0 2.99315
z3 9.25069 9.30713 10.5 10.4644
x1 0.170342 0.12258 0 0
x2 0.0367932 0.0575791 0 0.00166162
x3 0.759151 0.777962 0.999999 0.995503
y1 2.5158 2.39914 2.0 1.99765
y2 2.06291 1.80875 1.00001 1.00048
y3 2.862 2.98209 3.0 2.99814
y4 2.36484 2.36281 2.49999 2.49374
y5 2.06754 1.895 1.50001 1.49658
SD 1.62021 1.60347 2.42642 1.60188
Average NFE 50050 50050 50050 50050

λ3 =W , λ1 =λ2 = (1−W )/2, 0≤W ≤1
z 6.60213 9.3271 10.4638 7.89437 NA
z1 4.60113 4.45956 4.99082 5.06437
z2 3.61702 3.33100 2.99316 3.03862
z3 9.25069 9.32727 10.4644 10.6352
x1 0.170342 0.126015 0 0
x2 0.0367932 0 0.00166304 0
x3 0.759151 0.816303 0.995504 1.01287
y1 2.5158 2.26268 1.99765 2.02575
y2 2.06291 1.69841 1.00049 1.01288
y3 2.862 2.70093 2.99815 3.0

(Continued)
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TABLE 3 Continued

DE LDE1 LDE2 PSO GA [6]
y4 2.36484 2.29278 2.49374 3.0
y5 2.06754 1.85453 1.49659 1.51931
SD 2.03924 2.38526 2.4733 3.12773
Average NFE 50050 50050 50050 50050

Problem described as in [6]
z 6.87235 7.13425 7.73912 7.13425 3.2081
z1 3.32379 4.18588 4.46621 4.18588 3.8139
z2 1.99418 2.46762 2.57927 2.46762 3.0717
z3 6.9787 8.19198 8.12872 8.19198 5.1968
x1 2.65138e-006 0.000944931 0.000308158 0.000944931 0.1939
x2 0.000127494 0.061029 0.127573 0.061029 0.2810
x3 0.664552 0.738963 0.688939 0.738963 0.1968
y1 1.32963 1.72678 1.88971 1.72678 2.4872
y2 0.664947 0.928675 1.07383 0.928675 2.3971
y3 1.99454 2.64598 2.96046 2.64598 2.9454
y4 1.66177 2.03239 2.10569 2.03239 1.7229
y5 0.9971 1.0 1.0 1.0 1.8267
SD 2.20171 1.77604 1.41855 0.490581 NA
Average NFE 30794 50050 50050 50050 NA

For the MOSLP test problems, four test cases were considered with respect to the weighing factors
and the results were produced (for both SSFP and MOSLP) in terms of objective function value,
decision variable values, standard deviation and average number function evaluations. The results
of LDE algorithms were compared with the results of basic DE, PSO and the quoted results from
which it is observed that the LDE algorithms significantly improve the quality of solution of the
considered SP problems. This shows that the LDE algorithms provide an attractive alternative for
solving SP problems.
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