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Fraunhofer IPK Berlin

Department Security Systems
Pascalstr. 8-9, 10587 Berlin, Germany

mario.koeppen@ipk.fraunhofer.de

Abstract

This paper proposes a novel adaptive representation for
evolutionary multiobjective optimization for solving a stock
modeling problem. The standard Pareto Achieved Evolu-
tion Strategy (PAES) uses real or binary representation for
encoding solutions. Adaptive Pareto Archived Evolution
Strategy (APAES) uses dynamic alphabets for encoding so-
lutions. APAES is applied for modeling two popular stock
indices involving 4 objective functions. Further, two bench
mark test functions for multiobjective optimization are also
used to illustrate the performance of the algorithm. Empir-
ical results demonstrate APAES performs well when com-
pared to the standard PAES.

1 Introduction

Many multiobjective optimization techniques using evo-
lutionary algorithms have been proposed in recent years.
Pareto Archived Evolution Strategy (PAES) is one of the
most important algorithms for multiobjective optimization.
PAES is an simple evolutionary algorithm which can use
real or binary representation of solutions. This paper pro-
poses an adaptive representation of solutions for the stan-
dard PAES algorithm. This improvement has been in-
spired by Adaptive Representation Evolutionary Algorithm
(AREA) proposed in [1]. Following this model, each
PAES solution will consist of a pair (x, B), wherex is
a string encoding object variables andB specifies the al-
phabet used for encodingx. x is a string of symbols
over an alphabet{0,. . . , B-1}, B ≥ 2. Mutation can

modify object variables as well as the last position (fix-
ing the representation alphabet). Some numerical experi-
ments are performed to illustrate the APAES approach. In
the first experiment APAES is used for modeling Nasdaq
and Nifty stock indices [3], where the objective is to op-
timize four performance measures for predicting stock in-
dex values. Our previous research works ([3], [2]] involv-
ing Artificial Neural Networks (ANN), Neuro-Fuzzy (NF)
model, Support Vector Machines (SVM), Difference Boost-
ing Neural Network (DBNN) and Multi-Expression Pro-
gramming (MEP) clearly illustrate that none of the consid-
ered techniques could find an optimal solution for all the
four performance measures namely Root Mean Squared Er-
ror (RMSE), Correlation Coefficient (CC), Maximum Ab-
solute Percentage Error (MAP) and Mean Absolute Per-
centage Error (MAPE). We combine the results obtained
by these five techniques as an ensemble using APAES and
PAES with the task of optimizing all the four objectives.

In the second experiment, we used two well known mul-
tiobjective optimization test functions (ZDT4 and ZDT6)
([5], [6]) to illustrate the algorithm performance.

The paper is structured as follows: Section 2 presents
both PAES and APAES algorithms. In Section 3 numeri-
cal experiments with these two techniques are performed.
Some conclusions are also provided towards the end.

2 PAES and Adaptive PAES

2.1 PAES algorithm

Knowles and Corne [4] have proposed a simple evolu-
tionary algorithm called Pareto Archived Evolution Strat-
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egy (PAES). In PAES one parent generates by mutation one
offspring. The offspring is compared with the parent. If the
offspring dominates the parent, the offspring is accepted as
the next parent and the iteration continues. If the parent
dominates the offspring, the offspring is discarded and the
new mutated solution (a new offspring) is generated. If the
offspring and the parent do not dominate each other, a com-
parison set of previously nondominated individuals is used.

For maintaining population diversity along Pareto front,
an archive of nondominated solutions is considered. A new
generated offspring is compared with the archive to verify
if it dominates any member of the archive. If yes, then
the offspring enters the archive and is accepted as a new
parent. The dominated solutions are eliminated from the
archive. If the offspring does not dominate any member of
the archive, both parent and offspring are checked for their
nearness with the solution of the archive. If the offspring
resides in the least crowded region in the parameter space
among the members of the archive, it is accepted as a par-
ent and a copy is added to the archive. The standard PAES
algorithm is described as follows:

Standard PAES

repeat
Generate initial random solution c and add it to
archive
Mutate c to produce m and evaluate m
if c dominates m

discard m
else
if m dominates c

then replace c with m and add m to the
archive
else
if m is dominated by any member of the
archive

discard m
else apply test (c, m, archive) to
determine which becomes the new
current solution and whether to add m
to the archive

endif
endif

endif
until a termination criterion has been reached

2.2 Adaptive Pareto Archived Evolution Strategy
(APAES)

APAES can be considered as an adaptive representation
of the standard PAES. The following solution representation
is used: each solution consists of a pair (x, B), wherex is a

string encoding object variables andB specifies the alpha-
bet used for encodingx. x is a string of symbols over an
alphabet{0,. . . ,B-1}, B ≥ 2. The length ofx is not fixed;
for different value of the alphabet part different lengths forx
are considered. In our experiments (see Section 3.4, Table
4) we used a precision representation so that the chromo-
some length is 30 when the alphabet is 2 (when we have
binary representation). Of course, for greater values ofB
chromosome length is smaller.

And example of such a solution isC = (x = 30145413,
B = 6) (This is an example only and it doesn’t necessary
means that the length ofx is 8 if the alphabet is 6).

Mutation can modify object variables as well as the last
position (fixing the representation alphabet).

When the changing gene belongs to the object variable
sub-string (x – part of the chromosome), the mutated gene
is a symbol randomly chosen from the same alphabet.

If the position givingB is changed, then the object vari-
ables will be represented using symbols over the new alpha-
bet, corresponding to the mutated value ofB. Example

Consider the chromosomeC represented over the alpha-
betB = 8:

C = (x = 631751,B = 8).
If a mutation occurs on the last position (B) then the

mutated chromosome is:
C2 = (x2 = 209897,B2 = 10).
Remark
C andC2 encode the same value over two different al-

phabets (B = 8,B2 = 10).
The modification which occurs by using the above so-

lution representation for PAES algorithm consists in what
follows: when the current solutionc dominates the mutated
solutionm for a consecutive fixed number of times it means
that the representation of current solution has no potential
for exploring the search space from the place where it be-
longs. Therefore the representation of the current solution
must be changed in order to ensure a better exploration. In
this respect the alphabet part of solution is changed into an-
other random value. APAES is described as follows:

Adaptive Pareto Archived Evolution Strategy

repeat
Generate initial random solution c and add it to
archive
k = 0
Mutate c to produce m and evaluate m
if c dominates m
then

k = k + 1;
if k = Maximum number of harmful mutations
then

change the representation for the current
solution (i.e. mutate the alphabet over
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which the current solution is represented);
k = 0

else
if m dominates c
then replace c with m and add m to the
archive
else
if m is dominated by any member of the
archive
then discard m
else apply test (c, m, archive) to determine
which becomes the new current solution and
whether to add m to the archive
endif

endif
endif
until a termination criterion has been reached

3 Experiment Setup and Results

3.1 Experiment 1

We analyze the behavior of five different techniques for
modeling the Nasdaq-100 and NIFTY stock market indices
so as to optimize the performance indices (different error
measures and correlation coefficient) and to find an en-
semble combination of these techniques in order to fur-
ther optimize the performance. The five techniques used in
the experiments are: an Artificial Neural Network (ANN)
trained using the Levenberg-Marquardt algorithm, Support
Vector Machine (SVM), Difference Boosting Neural Net-
work (DBNN) , a Neuro-Nuzzy (NF) model and Multi-
Expression Programming (MEP). Readers may please con-
sult [2], [3] for technical details of the implementations
and for information related to the algorithms used. In or-
der to find an optimal combination of these paradigms, the
task is to evolve five coefficients (one for each technique)
so as to optimize the four performance measures namely
Root Mean Squared Error (RMSE), Correlation Coefficient
(CC), Maximum Absolute Percentage Error (MAP) and
Mean Absolute Percentage Error (MAPE). For this purpose,
the problem is formulated as a multiobjective optimization
problem. Results obtained by the evolved ensemble are
compared with the results obtained by the five techniques.

The goal is to optimize several error measures namely
minimum values for RMSE, MAP,MAPE and a maximum
value for CC.

RMSE =

√√√√
N∑

i=1

|Pactual,i − Ppredicted,i|,

CC =

N∑
i=1

Ppredicted,i

N∑
i=1

Pactual,i

,

MAP = max
( |Pactual, i − Ppredicted, i|

Ppredicted, i
× 100

)
,

MAPE =
1
N

N∑

i=1

[ |Pactual, i − Ppredicted, i|
Pactual, i

]
× 100,

where Pactual,i is the actual index value on dayi,
Ppredicted,i is the forecast value of the index on that day
andN = total number of days. The objective is to carefully
construct the different intelligent paradigms to achieve the
best generalization performance. Test data is then passed
through these individual models and the corresponding out-
puts are recorded. Suppose the daily index value predicted
by DBNN, SVM, NF, ANN and MEP arean, bn, cn, dn and
en respectively and the corresponding desired value is xn.
The task is to combinean, bn, cn, dn anden so as to get the
best output value that maximizes the CC and minimizes the
RMSE, MAP and MAPE values.

3.2 Ensemble Approach

The proposed method is to evolve a set of five coeffi-
cients (one for each technique) in order to obtain a linear
combination between these techniques so as to optimize the
values of RMSE, CC, MAP and MAPE. We consider this
problem as a multiobjective optimization problem in which
we want to find solution of this form: (coef1, coef2, coef3,
coef4, coef5), wherecoef1,. . . , coef5 are real numbers be-
tween -1 and 1, so as the resulting combination:

coef1*an + coef2*bn + coef3*cn + coef4*dn + coef5*en

would be close to the desired value (let us note thisxn).
This problem is equivalent to finding the Pareto solutions
of a multiobjective optimization problem (objectives being
RMSE, CC, MAP and MAPE). We compare here results
obtained by PAES and APAES for constructing ensembles.

3.3 Parameter Settings

The main parameters used in the experiments by PAES
and Adaptive PAES are presented in Table 1.

Adaptive PAES uses 32 alphabets and precision repre-
sentation is 0.000000001. Number of unsuccessful muta-
tion after which the alphabet part of the chromosome is
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Table 2. Performance comparison of the results obtained by PAES and APAES)
SVM NF ANN DBNN MEP APAES PAES

Test results - NASDAQ
RMSE 0.0180 0.0183 0.0284 0.0286 0.021 0.0160 0.01614
CC 0.9977 0.9976 0.9955 0.9940 0.999 0.999 0.998
MAP 481.50 520.84 481.71 116.98 96.39 95.58 94.976
MAPE 7.170 7.615 9.032 9.429 14.33 11.21 10.542
TEST results – NIFTY
RMSE 0.0149 0.0127 0.0122 0.0225 0.0163 0.013 0.013
CC 0.9968 0.9967 0.9968 0.9890 0.997 0.999 0.999
MAP 72.53 40.37 73.94 37.99 31.7 25.55 29.75
MAPE 4.416 3.320 3.353 5.086 3.72 3.01 2.910

Table 1. Parameters used by PAES and Adap-
tive PAES

Parameter Value
Archive size 250
Number of function evaluations 125,000
Chromosome length (for binary
representation)

30

changed is 500. Empirical results obtained by all 5 para-
digms and by ensembles using PAES and Adaptive PAES
are presented in Table 2.

Results are graphically illustrated in Figures 1 and 2 for
Nasdaq and Nifty stock indices respectively. Greater values
for CC and lower values for RMSE, MAP and MAPE in-
dicate a better convergence. For Nasdaq, APAES provided
best values for RMSE and CC values but performed rel-
atively well for MAP and MAPE. For Nifty stock index,
APEAS performed well especially for MAP while giving
comparative performance for RMSE and CC with respect
to CC. For MAPE values, PAES performed slightly better
than APAES.

3.4 Experiment 2

Test functions ZDT4 and ZDT6 proposed in [5][6] are
used for experiments. The test function T4 contains 219

local Pareto optimal fronts. The test function T6 includes
two difficulties caused by the non-uniformity of the search
space: first, the Pareto optimal solutions are non-uniformly
distributed along the global Pareto optimal front and sec-
ond, the density of the solutions is lowest near the Pareto
optimal front and highest away from the front. Parameters
used for the experiments are presented in Tables 3 and Table
4 respectively.

We compare the results obtained by PAES and APAES
using two performance measures:C and S metrics pro-

Table 3. Parameters used by PAES
Parameter Value
Chromosome length 900
Number of iterations 25,000
Archive size 100
Mutation probability 0.002

Table 4. Parameters used by APAES
Parameter Value
Representation precision 0.000000001
Number of iterations 25,000
Archive size 100
Mutation probability 0.002
Number of unsuccessful muta-
tions after which the alphabet
is changed

100

posed in [6]. The results obtained by applyingC metric are
presented in Table 5 andS metric results are graphically il-
lustrated in Figure 3. Figure 3(a) and 3 (b) corresponds to
test functions ZDT4 and ZDT6 respectively. As evident for
both test functions, APEAS performed well when compared
to PAES.

The value C(A, B) = 1 applied for two set of solutions
A andB means that all decision vectors inB are dominated
by A. The opposite, C(A, B) = 0, represents the situation
when none of the points inB are dominated byA. Greater
values forC metric indicate first set is better than the second
set.

4 Conclusions

A novel adaptive representation (APAES) for Evolution-
ary Multiobjective Optimization (EMO) by modifying the
standard Pareto Achieved Evolution Strategy (PAES) is pre-
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Figure 1. Values obtained by APAES and PAES for Nasdaq test data

Figure 2. Values obtained by APAES and PAES for Nifty test data
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Figure 3. Results obtained by PAES and APAES for test functions ZDT4 and ZDT6 by applying S
metric

Table 5. Results obtained by applying C met-
ric

PAES Adaptive
PAES

Test function ZDT4
PAES 1
Adaptive PAES 0
Test function ZDT6
PAES 0,0930233
Adaptive PAES 0,0707071

sented in this paper. APAES uses dynamic alphabets for en-
coding solutions when compared to the fixed binary repre-
sentation in PAES. APAES is applied for modeling Nasdaq
and Nifty stock indices and the empirical results clearly in-
dicates that the proposed EMO method is very promising.
Experiments using the two bench mark test functions also
reveal that APAES could give better solutions faster than
PAES (faster convergence). Our future research is targeted
to guide the APAES search procedure (for faster conver-
gence) using some hybrid meta-heuristic approaches.
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