
A Novel Variable Neighborhood Particle Swarm Optimization for
Multi-objective Flexible Job-shop Scheduling Problems

Hongbo Liu†,§, Ajith Abraham‡,†, Crina Grosan ‡, Ningning Li§
†School of Computer Science, Dalian Maritime University, Dalian 116026, China

‡Centre for Quantifiable Quality of Service in Communication Systems,
Faculty of Information Technology, Mathematics and Electrical Engineering,

Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
§Department of Computer Science, Dalian University of Technology, Dalian 116023, China

lhb@dlut.edu.cn, ajith.abraham@ieee.org, liningning1982@gmail.com

Abstract

This paper introduces a hybrid metaheuristic, the Vari-
able Neighborhood Particle Swarm Optimization (VNPSO),
consisting of a combination of the Variable Neighborhood
Search (VNS) and Particle Swarm Optimization (PSO). The
proposed VNPSO method is used for solving the multi-
objective Flexible Job-shop Scheduling Problems (FJSP).
The details of implementation for the multi-objective FJSP
and the corresponding computational experiments are re-
ported. The results indicate that the proposed algorithm
is an efficient approach for the multi-objective FJSP, espe-
cially for large scale problems.

1 Introduction

Flexible Job-shop Scheduling Problems (FJSP) is an ex-
tension of the classical JSP which allows an operation to
be processed by any machine from a given set. It incor-
porates all the difficulties and complexities of its predeces-
sor JSP and is more complex than JSP because of the ad-
ditional need to determine the assignment of operations to
the machines. The job shop is flexible, i.e. there are mul-
tiple job routes. The scheduling problem of a FJSP con-
sists of a routing sub-problem, that is, assigning each oper-
ation to a machine out of a set of capable machines and the
scheduling sub-problem, which consists of sequencing the
assigned operations on all machines in order to obtain a fea-
sible schedule minimizing a predefined objective function.
It is quite difficult to achieve an optimal solution with tra-
ditional optimization approaches owing to the high compu-
tational complexity. In the literature, different approaches
have been proposed to solve this problem. Mastrolilli and
Gambardella [1] proposed some neighborhood functions for

FJSP. Ong et al. [2] applied the clonal selection princi-
ple of the human immune system to solve FJSP with re-
circulation. Brandimarte [3], Saidi-Mehrabad and Fattahi
[4] presented a tabu search algorithm that solves the flexi-
ble job shop scheduling problem to minimize the makespan.
Liouane et al. [5] proposed a hybrid algorithm based on
ant systems and local search optimization for FJSP. More
researchers attempt to solve the FJSP using genetic algo-
rithms [6, 7]. Ho et al. [8] proposed an architecture for
learning and evolving of Flexible Job-Shop schedules to im-
prove the computational time and quality of schedules. In
many real-world FJSP, it is often necessary to optimize sev-
eral criteria [9]. Minimization of makespan, lateness, tar-
diness, flow time, machine idle time, and such others are
unusual the important criteria in the problems. Kacem et al.
[10, 11] studied on modeling genetic algorithms for FJSP.
Because of the intractable nature of the problem and its im-
portance in both fields of production management and com-
binatorial optimization, it is desirable to explore other av-
enues for developing good heuristic algorithms for the prob-
lem.

Particle Swarm Optimization (PSO) incorporates
swarming behaviors observed in flocks of birds, schools of
fish, or swarms of bees, and even human social behavior,
from which the intelligence is emerged [12, 13]. It has
become the new focus of research recently [14, 15, 16, 17].
However, its performance deteriorates as the dimension-
ality of the search space increases, especially for the
multi-objective FJSP involving large scale. PSO often
demonstrates faster convergence speed in the first phase
of the search, and then slows down or even stops as the
number of generations is increased. Once the algorithm
slows down, it is difficult to achieve better scheduling
solutions. By hybridizing particle swarm optimization
and simulated annealing, Xia and Wu [18] developed an

hybrid approach for the multi-objective flexible job-shop
scheduling problem (MFJSP). We introduce a novel hybrid
meta-heuristic, the Variable Neighborhood Particle Swarm
Optimization (VNPSO) for the multi-objective FJSP. The
basic idea is to drive those particles by a shaking strategy
and get them to explore variable neighborhood spaces for
the better scheduling solutions.

2 Problem formulation

We focus on flexible job-shop scheduling problems com-
posed of the following elements:

• Jobs. J = {J1, · · · , Jn} is a set of n jobs to be sched-
uled. Each job Ji consists of a predetermined sequence
of operations. Oi,j is the operation j of Ji. All jobs are
released at time 0.

• Machines. M = {M1, · · · ,Mm} is a set of m ma-
chines. Each machine can process only one operation
at a time. And each operation can be processed with-
out interruption during its performance on one of the
set of machines. All machines are available at time 0.

• Flexible. MFJSP usually is classified into two types as
follows:

– Total FJSP (T-FJSP): each operation can be pro-
cessed on any machine of M .

– Partial FJSP (P-FJSP): each operation can be pro-
cessed on one machine of subset of M .

• Constraints. The constraints are rules that limit the
possible assignments of the operations. They can be
divided mainly into the following situations:

– Each operation can be processed by only one ma-
chine at a time (disjunctive constraint).

– Each operation, which has started, runs to com-
pletion (non-preemption condition).

– Each machine performs operations one after an-
other (capacity constraint).

– Although there are no precedence constraints
among operations of different jobs, the predeter-
mined sequence of operation for each job forces
each operation to be scheduled after all prede-
cessor operations (precedence/conjunctive con-
straint).

– the machine constraints emphasize the operations
can be processed only by the machine from the
given set (resource constraint).

• Objective(s). Most of the research reported in the lit-
erature is focused on the single objective case of the
problem, in which the objective is to find a schedule
that has minimum time required to complete all oper-
ations (minimum makespan). Some other objectives,
such as flow time or tardiness are also important like
the makespan. Currently it has been paid more at-
tentions to investigate the problem from a multiobjec-
tive perspective. It is desirable to generate many near-
optimal schedules considering multiple objectives.

To formulate the objective, define Ci,j,k (i =
1, 2, · · · , n; j = 1, 2, · · · , p; k = 1, 2, · · · ,m) as the com-
pletion time that the machine Mk finishes the j-th operation
Oi,j of job i;

∑
Ck represents the time that the machine Mk

completes the processing of all the jobs. Define Csum =∑m
k=1(

∑
Ck) as the flowtime, and Cmax = max{∑Ck}

as the makespan. The problem is thus to both determine
an assignment and a sequence of the operations on all ma-
chines that minimize the criteria:

• The sum of the completion times (flowtime): Csum.

• the maximum completion time (makespan): Cmax.

Minimizing Csum asks the average job finishes quickly,
at the expense of the largest job taking a long time, whereas
minimizing Cmax, asks that no job takes too long, at the
expense of most jobs taking a long time. Minimization
of Cmax would result in maximization of Csum. The
weighted aggregation is the most common approach to
the problems. According to this approach, the objectives,
f1 = min{Csum} and f2 = min{Cmax}, are summed to a
weighted combination:

F = min(w1f1 + w2λf2) (1)

where λ is the scaling factor, which is the average num-
ber of machines per operation; w1 and w2 are non-negative
weights, and w1 + w2 = 1. These weights can be either
fixed or adapt dynamically during the optimization. The
dynamic weighted aggregation [19] was used in the paper.
Alternatively, the weights can be changed gradually accord-
ing to the Eqs. (2) and (3). The variation for different values
of w1 and w2 (R = 200) are illustrated in Fig. 1.

w1(t) = |sin(2πt/R)| (2)

w2(t) = 1− w1(t) (3)

Definition 1 A flexible job-shop scheduling problem can be
defined as

∏
= (J,O,M,F). The key components are

jobs, operations and machines. For the sake of simplify,
the scheduling problem also be represented in triple P =
(J,O, M).

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

t

w
1,w

2
w

1

w
2

Figure 1. Dynamic weight variation.

Let A(t) be the set of operations being processed at time
t, and let ri,j,k = 1 if operation j of job i is assigned on
machine k to be processed and ri,j,k = 0 otherwise. Let di,j

denote the duration (processing time) of operation j of job
i. The conceptual model of the MFJSP can be formulated
the following way:

Minimize F (Cmax, Csum) (4)

subject to :

Ci,j,k ≤ Ci,j+1,k − di,j+1. j = 1, · · · , p− 1. (5)
∑

j∈A(t)

ri,j,k ≤ 1, k ∈ M ; t ≥ 0. (6)

Ci,j,k ≥ 0, j = 1, · · · , n. (7)

The complexity of FJSP increases with the number of
constraints imposed and the size of search space employed
[20]. Except for some highly restricted special cases, very
simple special cases of FJSP are already strongly NP-hard.
For the standard FJSP, the size of search space is (n!)m, and
for this reason, it is computationally infeasible to try every
possible solution. This is because the required computation
time increases exponentially with the problem size. In prac-
tice, many real-world FJSPs have a larger number of jobs
and machines as well as additional constraints and flexibil-
ities, which further increase its complexity. For the same
number of machines and jobs, the P-FJSP is more difficult
to solve than the T-FJSP. Therefore, the P-FJSP is trans-
formed to the T-FJSP by adding ‘infinite processing times’
to the unused machines and to solve the latter instead in
[10]. However, although the P-FJSP is a generalization of
the T-FJSP, Ho et al. illustrated the distinguish between the
problem types of T-FJSP and P-FJSP [8].

3 PSOs for FJSP

3.1 SPSO and its Convergence

The standard PSO model consists of a swarm of par-
ticles, which are initialized with a population of random

candidate solutions. They move iteratively through the d-
dimensional problem space to search the new solutions,
where the fitness, f , can be calculated as the certain qual-
ities measure. Each particle has a position represented by
a position-vector ~xi (i is the index of the particle), and a
velocity represented by a velocity-vector ~vi. Each particle
remembers its own best position so far in a vector ~x#

i , and
its j-th dimensional value is x#

ij . The best position-vector
among the swarm so far is then stored in a vector ~x∗, and
its j-th dimensional value is x∗j . During the iteration time t,
the update of the velocity from the previous velocity to the
new velocity is determined by Eq.(8). The new position is
then determined by the sum of the previous position and the
new velocity by Eq.(9).

vij(t) =wvij(t− 1) + c1r1(x
#
ij(t− 1)− xij(t− 1))

+ c2r2(x∗j (t− 1)− xij(t− 1))
(8)

xij(t) = xij(t− 1) + vij(t) (9)

vi,j = sign(vi,j)min(|vi,j | , vmax) (10)

xi,j = sign(xi,j)min(|xi,j | , xmax) (11)

where r1 and r2 are the random numbers in the interval
[0,1]. c1 is a positive constant, called as coefficient of the
self-recognition component, c2 is a positive constant, called
as coefficient of the social component. The variable w is
called as the inertia factor, which value is typically setup to
vary linearly from 1 to near 0 during the iterated process-
ing. From Eq.(8), a particle decides where to move next,
considering its current state, its own experience, which is
the memory of its best past position, and the experience
of its most successful particle in the swarm. The pseudo-
code for SPSO is illustrated in Algorithm 1. The particle
swarm algorithm can be described generally as a popula-
tion of vectors whose trajectories oscillate around a region
which is defined by each individual’s previous best success
and the success of some other particle. Bergh and Engel-
brecht [21] overviewed the theoretical studies, and extend
these studies to investigate particle trajectories for general
swarms to include the influence of the inertia term. They
also provided a formal proof that each particle converges to
a stable point. Eberhart and Kennedy called the two basic
methods as “gbest model” and “lbest model” [12]. In the
lbest model, particles have information only of their own
and their nearest array neighbors’ best, rather than that of
the entire group. Unfortunately there is a large computa-
tional cost to explore the neighborhood relation in each it-
eration. In the gbest model, the trajectory for each particle’s
search is influenced by the best point found by any member
of the entire population. The best particle acts as an at-
tractor, pulling all the particles towards it. Some previous
studies has been shown that the trajectories of the particles

oscillate in different sinusoidal waves and converge quickly
in the “gbest model” algorithm [22, 23]. During the iter-
ation, the particle is attracted towards the location of the
best fitness achieved so far by the particle itself and by the
location of the best fitness achieved so far across the whole
swarm. The “gbest model” has faster convergence. But very
often for multi-modal problems involving high dimensions
it tends to suffer from premature convergence [24, 25].

Algorithm 1 Particle Swarm Algorithm
01. Begin
02. Parameter settings and initialize swarm
03. Evaluation
04. Locate leader
05. g = 1
06. While (the end criterion is not met) do
07. For each particle
08. Update velocity
09. Update position
10. Evaluation
11. Update pbest
12. EndFor
13. Update leader
14. g + +
15. End While
16. End

3.2 VNPSO

The aim of Variable Neighbourhood Search approaches
is to avoid poor local optima by systematically changing
neighbourhood which increases its size iteratively until a lo-
cal minimum is better than the current one is found. These
steps are repeated until a given termination condition is
met. Hansen and Mladenović suggest various VNS strate-
gies for a wide range of combinatorial optimization prob-
lems [26, 27]. The major difference between our approach
and the VNS approach proposed by Hansen and Mladen-
ović lies in the change of neighbourhoods by perturbing
the particles effectively. The metaheuristic method we pro-
posed in [28], the VNPSO, was originally inspired by VNS.
In PSO, if a particle’s velocity decreases to a threshold vc,
a new velocity is assigned using Eq.(12):

vij(t) =wv̂ + c1r1(x
#
ij(t− 1)− xij(t− 1))

+ c2r2(x∗j (t− 1)− xij(t− 1))
(12)

v̂ =

{
vij if |vij | ≥ vc

rand(−1, 1)vmax/η if |vij | < vc

(13)

where rand(−1, 1) is the random number, normal dis-
tributed with the interval [-1,1], and η is the variable neigh-

borhood scaling factor to control the domain of the parti-
cle’s oscillation according to vmax. vc is the minimum ve-
locity threshold, a tunable threshold parameter to limit the
minimum of the particles’ velocity. Our algorithm scheme
is summarized as Algorithm 2. The performance of the al-
gorithm is directly correlated to two parameter values, vc

and ρ. A large vc shortens the oscillation period, and it pro-
vides a great probability for the particles to leap over local
minima using the same number of iterations. But a large
vc compels the particles in the quick “flying” state, which
leads them not to search the solution and forcing them not
to refine the search. The value of ρ changes directly the
variable search neighborhoods for the particles. We also
implemented the Multi-Start PSO (MSPSO), illustrated in
Algorithm 3, to compare their performances.

Algorithm 2 Variable Neighborhood Particle Swarm Opti-
mization
01. Initialize the size of the particle swarm n,
01. and other parameters.
02. Initialize the positions and the velocities for all
02. the particles randomly.
03. Set the flag of iterations without
03. improvement Nohope = 0.
04. While (the end criterion is not met) do
05. g = 1;
06. Calculate the fitness value of each particle;
07. ~x∗ = argminn

i=1(f(~x∗(t− 1)), f(~x1(t)),
07. f(~x2(t)), · · · , f(~xi(t)), · · · , f(~xn(t)));
08. If ~x∗ is improved then Nohope = 0,
08. else Nohope = Nohope + 1.
09. For i= 1 to n
10. ~x#

i (t) = argminn
i=1(f(~x#

i (t− 1)), f(~xi(t));
11. For j = 1 to d
12. If Nohope < 10 then
13. Update the j-th dimension value of ~xi and ~vi

13. according to Eqs.(8),(10),(9),(11);
14. else
15. Update the j-th dimension value of ~xi and ~vi

15. according to Eqs.(13),(12),(9),(11).
16. Next j
17. Next i
18. g++
19. End While.

3.3 Encoding Representations

Encoding representation can be extremely important
when trying to find solutions to a problem in a heuristic
or metaheuristic algorithm. The data structures, such as the
chromosome, particle position, plus the algorithm combine

to make efficient programs. Better efficiency of search can
be achieved by modifying the encoding representation and
its related operators so as to generate feasible solutions and
avoiding the use of a repair mechanism. A bad encoding
representation can increase the size of the search space or
slow down the algorithm if too many repair operators are
needed to ensure the representation is valid.

Algorithm 3 Multi-start Particle Swarm Optimization
01. Initialize the size of the particle swarm n,
01. and other parameters.
02. Initialize the positions and the velocities for all
02. the particles randomly.
03. Set the flag of iterations without
03. improvement Nohope = 0.
04. While (the end criterion is not met) do
05. g = 1;
06. Calculate the fitness value of each particle;
07. ~x∗ = argminn

i=1(f(~x∗(t− 1)), f(~x1(t)),
07. f(~x2(t)), · · · , f(~xi(t)), · · · , f(~xn(t)));
08. If ~x∗ is improved then Nohope = 0,
08. else Nohope = Nohope + 1.
09. For i= 1 to n
10. ~x#

i (t) = argminn
i=1(f(~x#

i (t− 1)), f(~xi(t));
11. For j = 1 to d
12. If Nohope < 10 then
13. Update the j-th dimension value of ~xi and ~vi

13. according to Eqs.(8),(10),(9),(11);
14. else
15. Re-initialize the positions and the velocities
15. for all the particles randomly.
16. Next j
17. Next i
18. g++
19. End While.

Cheng et al. [6], Kleeman and Lamont [9] introduced a
taxonomy of how Evolutionary Algorithms (EA) represent
job-shop problems. These representations can be classified
as either directly encoded approaches or indirectly coded
approaches. With a direct approach, a schedule is encoded
into the chromosome. The EA then operates on these sched-
ules in an effort to find the best schedule. For direct ap-
proaches, there are five different ways the EA can be en-
coded:

• Operation-based

• Job-based

• Job pair relation-based

• Completion time-based

• Random keys

Indirect approaches are chromosome representations that
do not directly encode the schedule into the chromosome.
There are four indirect approaches:

• Preference list-based

• Priority rule-based

• Disjunctive graph-based

• Machine-based

For encoding representations, we have to consider time
and space computational complexity, the need to maintain
solution feasibility. To solve FJSP, there are the three im-
portant factors:

• Flexibility

• Length

• Availability

There are fixed sequences for operations in each job
(precedence constraints). But there are no precedence con-
straints among operations of different jobs. If the job and
the operations are ordered beforehand, there is not enough
flexible between jobs. Gen et al. [29] proposed a per-
fect method: they name all operations for a job with the
same symbol (for example, the corresponding job index)
and then interpret them according to the order of occur-
rences in the sequence of a given chromosome. All per-
mutations of the chromosome yield a valid schedule. The
chromosome length is

∑n
i=1 pi, where n is the number of

jobs and pi is the number of operations in job i. It would be
confronted with another difficulty: how to check effectively
which machine can process the assigning operations when
it deals with P-FJSP. For the same number of machines and
jobs, the Kacem et al. [10] transformed the P-FJSP to the
T-FJSP by adding ‘infinite processing times’ to the unused
machines. Some individuals would be evaluated to ‘infi-
nite’. This increases the overall time complexity due to the
presence of redundant assignments. Ho et al. [8] proposed
a new chromosomal representation, which has two compo-
nents: operation order and machine selection. Operation or-
der component is similar to Gen’s method. Each individual
is obtained from this schedule by replacing each operation
by the corresponding job index. By reading the data from
left to right and increasing operation index of each job, a
feasible schedule is always obtained. The machine selec-
tion component consists of a chromosome of size

∑n
i=1 pi.

Each allele of the chromosome is a sub-chromosome, which
lists the preference which machine would process the oper-
ation. For the problem in Table 1, one possible encoding
is shown in Fig. 2. This method inherits the advantages
of both the operation-based chromosome representation and
the preference list-based representation. The chromosome

Table 1. An example of the P-FJSP.

M1 M2 M3

J1 O1,1 4 5 XXX
O1,2 9 2 2
O1,3 XXX 6 3

J2 O2,1 6 5 XXX
O2,2 3 3 5

M3J1

O2,2 O1,1 O2,1 O1,3O1,2

J2 J1 J2 J1

1

M1 M2

O1,1

1212

M2 M3

O1,3

M1 M2

O2,1

0

M1 M2

O2,2

M3M1 M2

O1,2

10100110010

Operation order component Machine selection component

Figure 2. Operation-order-machine-selection
representation.

length is
∑n

i=1 pi +
∑n

i=1 pi ∗ qj , where n is the number
of jobs, pi is the number of operations in job i, qj is the
number of machines which operation Oi,j can be assigned
on. This chromosome representation has to consider the
availability of machines that process operations so that the
decoding processing reduces the search space size. But it
is possible that one operation is assigned on more than one
machine after crossover and mutation operators. Therefore,
a repair mechanism to maintain feasibility is required. In
addition, this representation is complex and redundant for
the T-FJSP, since the machine selection component seems
too long.

In our PSO algorithms, the position representation of the
particles also has two components: operation order and ma-
chine selection. But it is with a variable length strategy.
The first part, operation order component provides the or-
der of operations, and all operations for a job is signed with
the corresponding job index. The second part, machine se-
lection component is variable length according to the prob-
lems. If the average number of machines per operation is
larger than the half of number of machines, we encode each
dimension with a random number in the interval [1,m+1).
Each dimension of the particle’s position maps one oper-
ation, and the value of the position indicates the machine
number to which this task/operation is assigned during the
course of particle swarm algorithm. So the value of a par-
ticle’s position should be integer. But after updating the
velocity and position of the particles, the particle’s posi-
tion may appear real values such as 1.4, etc. It is mean-

ingless for the assignment. Therefore, in the algorithm we
usually round off the real optimum value to its nearest in-
teger number. In this part, the sequence of the operations
will be not changed during the iteration. The feasible dif-
ferent sequence schedule of the operations between differ-
ent jobs comes from the first part. If the average number
of machines per operation is less than or equal to the half
of number of machines, we extend it as Fig. 2. The vari-
able length representation allows the algorithm to maintain
a balance between the flexibility of FJSP and search space,
and to converge on the better results effectively.

4 Experiment Settings, Results and Discus-
sions

To illustrate the effectiveness and performance of the
proposed algorithm, three representative instances based on
practical data have been selected. Three problem instances
((J8, O27,M8), (J10, O30,M10) and (J15, O56,M10)
are taken from Kacem et al. [10, 11, 30]. In our experi-
ments, the algorithms used for comparison were MSPSO
(Multi-start PSO) and VNPSO (Variable Neighborhood
PSO). In VNPSO, ρ and vc were set to 2 and 1e-7 before
15,000 iterations, while they were set to 5 and 1e-10 af-
ter 15,000 iterations. Other parameter settings are shown
in table 2. The average fitness values of the best solutions
throughout the optimization run were recorded. The aver-
ages (F) and the standard deviations (std) were calculated
from the 10 different trials. The standard deviation indicates
the differences in the results during the 10 different trials.
Usually another emphasis will be to generate the schedules
at a minimal amount of time. So the completion time for 10
trials were used as one of the criteria to improve their per-
formance. Figs. 3, 4 and 5 illustrate the performance for the
three algorithms during the search processes for the three
FJSPs. Empirical results are illustrated in Table 3. In gen-
eral, VNPSO performs better than another approaches, al-
though its computational time is worse than VTPSO for the
low dimension problem, (J8, O27,M8). VNPSO could be
an ideal approach for solving the large scale problems when
other algorithms failed to give a better solution.

5 Conclusions

In this paper, we introduced a hybrid metaheuristic,
the Variable Neighborhood Particle Swarm Optimization
(VNPSO), consisting of a combination of the Vari-
able Neighborhood Search (VNS) and Particle Swarm
Optimization(PSO), and considered its application for
solving the multi-objective Flexible Job-shop Scheduling
Problems (FJSP). The details of implementation for the
multi-objective FJSP are provided and its performance

Table 2. Parameter settings for the algo-
rithms.

Algorithm Parameter name Value
Size of the population 20

MSGA Probability of crossover 0.9
Probability of mutation 0.09
Swarm size 20
Inertia weight w 0.7

PSOs Self coefficient c1 (w + 1)2/2
Social coefficient c2 (w + 1)2/2
Clamping Coefficient ρ 0.5

0 0.5 1 1.5 2

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

Iteration

F

MSPSO
VNPSO

Figure 3. The performance of the algorithms
for (J8, O27,M8) FJSP.

0 0.5 1 1.5 2

x 10
4

25

30

35

40

45

Iteration

F

MSPSO
VNPSO

Figure 4. The performance of the algorithms
for (J10, O30,M10) FJSP.

0 0.5 1 1.5 2

x 10
4

55

60

65

70

75

80

Iteration

F

MSPSO
VNPSO

Figure 5. The performance of the algorithms
for (J15, O56,M10) FJSP.

Table 3. Comparing the results for FJSPs.

Instance MSPSO VNPSO
(8, 27, 8) 61.0661 ±4.8259 41.1429 ±4.4263
(10, 30, 10) 35.3840 ±3.2902 27.2727 ±3.3195
(15, 56, 10) 67.6364 ±1.8778 57.6364 ±5.6886

was compared using computational experiments. The
empirical results have shown that the proposed algorithm is
an available and effective approach for the multi-objective
FJSP, especially for large scale problems.

Acknowledgments
We would like to thank Drs. Ran He and Bo Li for
their scientific collaboration in this research work. This
work is supported partly by NSFC (60573087) and MOE
(06JJDXLX001).

References

[1] M. Mastrolilli and L. M. Gambardella. “Effective neighbor-
hood functions for the flexible job shop problem”. Journal of
Scheduling, 2002, 3(1), pp. 3–20.

[2] Z. X. Ong , J. C. Tay and C. K. Kwoh. “Applying the Clonal
Selection Principle to Find Flexible Job-Shop Schedules”.
Lecture Notes in Computer Science, 2005, 3627, pp. 442–455.

[3] P. Brandimarte. “Routing and Scheduling in a Flexible Job-
Shop by Tabu Search”. Annals of Operations Research, 1993,
2, pp. 158–183.

[4] M. Saidi-Mehrabad and P. Fattahi. “Flexible job shop
scheduling with tabu search algorithms”. International Jour-
nal of Adv Manuf Technol, 2007, 32, pp. 563–570.

[5] N. Liouane, I. Saad, S. Hammadi and P. Borne. “Ant systems
& Local Search Optimization for flexible Job Shop Schedul-

ing Production”. International Journal of Computers, Com-
munications & Control, 2007, 2(2), pp. 174–184.

[6] R. Cheng, M. Gen and Y. Tsujimura. “A tutorial survey of
job-shop scheduling problems using genetic algorithms, part
I: representation”. International Journal of Computers and
Industrial Engineering 1996, 30, pp. 983–997.

[7] R. Cheng, M. Gen and Y. Tsujimura. “A tutorial survey of
job-shop scheduling problems using genetic algorithms, part
II: hybrid genetic search strategies”. International Journal of
Computers and Industrial Engineering, 1996, 36, pp. 343–
364.

[8] N. B. Ho, J. C. Tay and E. Lai. “An effective architecture for
learning and evolving flexible job-shop schedules”. European
Journal of Operational Research, 2007, 179, pp. 316–333.

[9] M. P. Kleeman and G. B. Lamont. “Scheduling of Flow-
Shop, Job-Shop, and Combined Scheduling Problems us-
ing MOEAs with Fixed and Variable Length Chromosomes”.
Studies in Computational Intelligence, 2007, 49, pp. 49–99.

[10] I. Kacem, S. Hammadi and P. Borne. “Approach by localiza-
tion and multiobjective evolutionary optimization for flexible
job-shop scheduling problems”. IEEE Transactions on Sys-
tems, Man and Cybernetics, 2002, 32(1), pp. 1–13.

[11] I. Kacem, S. Hammadi and P. Borne. “Pareto-optimality ap-
proach for flexible job-shop scheduling problems: hybridiza-
tion of evolutionary algorithms and fuzzy logic”. Mathemat-
ics and Computers in Simulation, 2002, 60, pp. 245–276.

[12] J. Kennedy, and R. Eberhart. Swarm Intelligence. Morgan
Kaufmann, CA, 2001.

[13] M. Clerc. Particle Swarm Optimization. ISTE Publishing
Company, London, 2006.

[14] A. Abraham, H. Guo and H. Liu. “Swarm intelligence: foun-
dations, perspectives and applications”. In: Swarm Intelligent
Systems, Studies in Computational Intelligence, N. Nedjah, L.
Mourelle (eds.), Springer, 2006, pp. 3–25.

[15] A. Abraham, H. Liu and Zhang W.: “Scheduling job on
computational Grids using fuzzy particle swarm algorithm”.
Lecture Notes in Artificial Intelligence, 4252, 2006, pp. 500–
507.

[16] C. Grosan, A. Abraham and M. Nicoara. “Search optimiza-
tion using hybrid particle sub-swarms and evolutionary algo-
rithms”. International Journal of Simulation Systems, Science
& Technology, 2005, 6(10-11), pp. 60–79.

[17] C. Grosan. “Multiobjective 0/1 Knapsack Problem using
Adaptive ε -Dominance”. Lecture Notes in Computer Science,
2006, pp. 547–556.

[18] W. Xia and Z. Wu. “An Effective Hybrid Optimization
Approach for Multi-objective Flexible Job-shop Scheduling
Problems”. Computers and Industrial Engineering, 2005, 48,
pp. 409–425.

[19] Parsopoulos K. E. and Vrahatis M. N.: “Recent Approaches
to Global Optimization Problems through Particle Swarm Op-
timization”. Natural Computing, 2002, 1, pp. 235–306.

[20] K. Ripon, C. Tsang and S. Kwong. “An Evolutionary Ap-
proach for Solving the Multi-Objective Job-Shop Scheduling
Problem”. Studies in Computational Intelligence, 2007, 49,
165–195.

[21] F. van den Bergh and A.P. Engelbrecht. “A study of par-
ticle swarm optimization particle trajectories”. Information
Sciences, 2006, 176, pp. 937–971.

[22] M. Clerc and J. Kennedy. “The Particle Swarm-explosion,
Stability, and Convergence in A Multidimensional Complex
Space”. IEEE Transactions on Evolutionary Computation,
2002, 6, pp. 58–73.

[23] T. I. Cristian “The Particle Swarm Optimization Algorithm:
Convergence Analysis and Parameter Selection”. Information
Processing Letters, 2003, 85(6), pp. 317–325.

[24] H. Liu, B. Li, Y. Ji and T. Sun. “Particle Swarm Optimisation
from lbest to gbest”. Applied Soft Computing Technologies:
The Challenge of Complexity, A. Abraham, B. D. Baets, M.
Köppen, B. Nickolay (Eds.), Springer, 2006, pp. 537–545.

[25] H. Liu, A. Abraham and M. Clerc. “Chaotic Dynamic Char-
acteristics in Swarm Intelligence”. Applied Soft Computing
Journal, 2007, 7, pp.1019–1026.

[26] P. Hansen and N. Mladenović. “Variable neighbourhood
search: Principles and applications”. European Journal of
Operations Research, 2001, 130, pp. 449–467.

[27] P. Hansen, N. Mladenović. “Variable Neighborhood Search”.
Handbook of Metaheuristics, F. V. Glover, G. A. Kochen-
berger (eds.), Kluwer Academic Publishers, 2003, pp. 145–
184.

[28] H. Liu and A. Abraham. “An Hybrid Fuzzy Variable Neigh-
borhood Particle Swarm Optimization Algorithm for Solving
Quadratic Assignment Problems”. Journal of Universal Com-
puter Science, Vol. 13, 2007 (to appear)

[29] M. Gen , Y. Tsujimura and E. Kubota. “Solving job-shop
scheduling problem using genetic algorithms”. Proceedings
of the 16th international conference on computer and indus-
trial engineering, 1994, pp. 576–579.

[30] Taillard, E.D. “Benchmarks for Basic Scheduling Prob-
lems”. European Journal of Operational Research, 1993,
64(2), pp. 278–285.

