
1

Nature's Heuristics for Scheduling Jobs on Computational Grids

Ajith Abraham, Rajkumar Buyya* and Baikunth Nath

School of Computing and Information Technology
Monash University, Gippsland Campus

Churchill, VIC 3842, Australia

*School of Computer Science and Software Engineering
Monash University, Caulfield Campus

Caulfield, VIC 3145, Australia

Email: {Ajith.Abraham, Rajkumar.Buyya, Baikunth.Nath}@infotech.monash.edu.au

Abstract

Computational Grid (Grid Computing) is a new
paradigm that will drive the computing arena in the new
millennium. Unification of globally remote and diverse
resources, coupled with the increasing computational
needs for Grand Challenge Applications (GCA) and
accelerated growth of the Internet and communication
technology will further fuel the development of global
computational power grids. In this paper, we attempt to
address the scheduling of jobs to the geographically
distributed computing resources. Conventional wisdom in
the field of scheduling is that scheduling problems exhibit
such richness and variety that no single scheduling
method is sufficient. Heuristics derived from the nature
has demonstrated a surprising degree of effectiveness and
generality for handling combinatorial optimization
problems. This paper begins with an introduction of
computational grids followed by a brief description of the
three nature's heuristics namely Genetic Algorithm (GA),
Simulated Annealing (SA) and Tabu Search (TS).
Experimental results using GA are included. We further
demonstrate the hybridized usage of the above algorithms
that can be applied in a computational grid environment
for job scheduling.

Keywords: Computational grid, grid computing,
scheduling, resource management, global optimization
algorithms, genetic algorithm, simulated annealing, tabu
search, nature's heuristics and hybrid algorithm.

1 Introduction

Grid Computing (GC) is the ultimate framework to
meet the growing computational demands in the new
millennium [1-3]. To meet the growing needs of the
computational power, geographically distributed
resources need to be logically coupled together to make
them work as a unified resource (see Figure 1). The
continuous exponential growth of the Internet and World
Wide Web (WWW), ever improving high-bandwidth
communications, wide spread availability of powerful
computers and low-cost components will further enhance
transformation of computational grids to a reality.

Computing resources are geographically distributed under
different ownerships each having their own access policy,
cost and various constraints. Every resource owners will
have a unique way of managing and scheduling resources
and the grid schedulers are to ensure that they do not
conflict with resource owner's policies. In the worst-case
situation, the resource owners might charge different
prices to different grid users for their resource usage and
it might vary from time to time. Traditionally, most of the
schedulers followed system centric approach in resource
selection and often completely ignore the user
requirements. In an economic-based approach an optimal
schedule often relies on a trade off between cost and the
user specified deadline [4]. Our approach is to
dynamically generate an optimal schedule so as to
complete the tasks in a minimum period of time as well
as utilizing the resources in an efficient way.

In recent years, several analogies from the natural
and social systems have been widely accepted to form
powerful heuristics, which have proven to be highly
successful in solving several NP hard global optimization
problems [5][12][18]. Some of the common
characteristics of nature's heuristics are the close
resemblance of a phenomenon existing in nature, non-
deterministic; present implicitly a parallel structure and
adaptability. In section 3, 4 and 5 we will briefly discuss
the features of genetic algorithm, simulated annealing and
tabu search and in section 6 we demonstrate how it can be
used to formulate scheduling independent tasks in a grid
environment.

2 Grid Resource Management and

Scheduling Issues
Figure 1 depicts the general framework for grid

computing focusing on the interaction between grid
resource broker, Domain Resource Manager (DRM) and
the grid information server. The grid resource broker is
responsible for resource discovery, deciding allocation of
a job to a particular resource, binding of user applications
(files), hardware resources, initiate computations, adapt to
the changes in grid resources and present the grid to the
user as a single, unified resource. It finally controls the
physical allocation of the tasks and manages the available

2

Figure 1. General Framework of a Computational Grid

resources constantly while dynamically updating the grid
scheduler whenever there is a change in resource
availability. In a grid environment knowing the
processing speeds of the available resources and the job
length of user applications is a tedious task. Usually it is
easy to get information about the speed of the available
resources but quite complicated to know the
computational processing time requirements from the
user. When the computing power demand is much greater
than the available resources only dynamic scheduling will
be useful. To conceptualize the problem as an algorithm,
we need to dynamically estimate the job lengths from
user application specifications or historical data. Soft
computing techniques like fuzzy logic and artificial
neural networks might be of useful aid in the parameters
estimation process especially in times of uncertainty and
vague data.

To formulate the problem, we consider Jn
independent user jobs n={1,2,….N} on Rm heterogeneous
resources m={1,2,….,M} with an objective of minimising
the completion time and utilizing the resources
effectively. The speed of each resource is expressed in
number of cycles per unit time, and the length of each job
in number of cycles. Each job Jn has processing
requirement Pj cycles and resource Rm has speed of Si
cycles/unit time. Any job Jn, once allocated to a resource
Rm, has to be processed on this resource until completion.

To formulate our objective, define Cj as the
completion time the last job j finishes processing. Define
Cmax = max {ΣCj /M, j=1,…,N}, the makespan and ΣCj ,
as the flowtime. An optimal schedule will be the one that
optimizes the flowtime and makespan [6]. The
conceptually obvious rule to minimize ΣCj is to schedule

Shortest Job on the Fastest Resource (SJFR). The
simplest rule to minimize Cmax is to schedule the Longest
Job on the Fastest Resource (LJFR). Minimizing ΣCj asks
the average job finishes quickly, at the expense of the
largest job taking a long time, whereas minimizing Cmax,
asks that no job takes too long, at the expense of most
jobs taking a long time. In summary, minimization of
Cmax will result in maximization of ΣCj or vice versa [17].

3 Genetic Algorithm (GA)

GAs are adaptive methods that can be used to solve
optimization problems, based on the genetic process of
biological organisms. Over many generations, natural
populations evolve according to the principles of natural
selection and "Survival of the Fittest", first clearly stated
by Charles Darwin in "The Origin of Species". By
mimicking this process, GAs are able to "evolve"
solutions to real world problems, if they have been
suitably encoded. GA search is constrained neither by the
continuity of the function under investigation, nor the
existence of a derivative function [7]. Figure 2 illustrates
the functional block diagram of a GA. It is assumed that a
potential solution to a problem may be represented as a
set of parameters. These parameters (known as genes) are
joined together to form a string of values (known as a
chromosome). The particular values the genes represent
are called its alleles. The position of the gene in the
chromosome is its locus. Encoding issues deal with
representing a solution in a chromosome and
unfortunately, no one technique works best for all
problems. A fitness function must be devised for each
problem to be solved. Given a particular chromosome, the

3

Figure 2. Flowchart of GA Iteration

fitness function returns a single numerical fitness or
figure of merit, which will determine the ability of the
individual, which that chromosome represents.
Reproduction is another critical attribute of GAs where
two individuals selected from the population are allowed
to mate to produce offspring, which will comprise the
next generation. Having selected two parents, their
chromosomes are recombined, typically using the
mechanisms of crossover and mutation. Traditional view
is that crossover is the more important of the two
techniques for rapidly exploring a search space. Mutation
provides a small amount of random search, and helps
ensure that no point in the search space has a zero
probability of being examined. If the GA has been
correctly implemented, the population will evolve over
successive generations so that the fitness of the best and
the average individual in each generation increases
towards the global optimum. Selection is the conservation
of the fittest individuals for the next generation and is
based on 3 parts. The first part involves determination of
the individual’s fitness by the fitness function. The
second part involves converting the fitness function into
an expected value followed by the last part where the
expected value is then converted to a discrete number of
offspring. To avoid premature convergence of GAs due to
interference from mutation and genetic drift, sharing and
crowding may be used to decrease the amount of
duplicate schemata in the population. Elitism may be
incorporated to keep the most superior individuals (and
superior schemata) within the population. The use of GA
in formulating the scheduling algorithm is discussed in
section 6.1.

4 Simulated Annealing (SA)

SA exploits an analogy between the way in which a
metal cools and freezes into a minimum energy
crystalline structure (the annealing process) and the
search for a minimum in a more general system. SA's
major advantage over other methods is an ability to avoid
becoming trapped at local minima. Figure 3 shows a
flowchart of SA iteration. The annealing schedule, i.e.,
the temperature-decreasing rate used in SA is an
important factor, which affects SA's rate of convergence.

The algorithm employs a random search, which not only
accepts changes that decrease objective function " f ", but
also some changes that increase it. The latter are accepted

with a probability �
�

�
�
�

�−=
T
fp δ

exp , where fδ is the

increase in objective function, and " f " and T are control
parameters. Several SAs have been developed with
annealing schedule inversely linear in time (Fast SA),
exponential function of time (Very Fast SA) etc. We
explain a SA algorithm [10], which is exponentially faster
than Very Fast SA whose annealing schedule is given by

)exp(
)(0

ke
TkT = , where 0T is the initial temperature,)(kT

is the temperature we wish to approach to zero for
k=1,2,….

If the generation function of the simulated annealing
algorithm is represented as:

∏ ∏
++

==
= =

D

i

D

i
i

i
i

ikk
kT

kT
z

zgZg
1 1)))(/1ln(1(ln)

))(/1(ln
1(2

1)()(

Where)(kTi is the temperature in dimension i at time k.
The generation probability will be represented by

� ∏�� −
=

−− == Dz D

i
ikiDk

zz
k zGdzdzdzZgZG 1

1
2111)(....)(.....)(21

Where
)))(/1ln(1ln(2

)))(/1ln(1ln()sgn(
2
1)(

kT
kTzz

zG
i

iii
iki +

+
+=

It is straightforward to prove that an annealing schedule
for

))exp(exp()(/1
0

D
iii kbTkT −=

A global minimum, statistically, can be obtained. That is,

�
∞

=
∞=

okk
kg

Where bi > 0 is a constant parameter and k0 is a
sufficiently large constant to satisfy the above equation if
the generation function is adopted.

4

Figure 3. Flowchart of SA Iteration

5 Tabu Search (TS)
TS is a meta-strategy for guiding known heuristics to

overcome local optimality and has now become an
established optimization approach that is rapidly
spreading to many new fields. The method can be viewed
as an iterative technique which explores a set of problem
solutions, denoted by X, by repeatedly making moves
from one solution s to another solution s′ located in the
neighborhood N(s) of s. These moves are performed with
the aim of efficiently reaching optimal solution by the
evaluation of some objective function f(s) to be
minimized [8][9][13]. In the sequel we sketch the basic
ingredients of TS.

Let us define the notion of neighborhood N(s) for
each solution s in X. By definition N(s) is a set of
solutions in X reachable from s via a slight modification
m.

N(s) = {s′ ∈ X │s′ = s ⊕ m, m ∈ M}

Where M contains all possible modifications and
s′ = s ⊕ m means that s′ is obtained by applying
modification m to s. TS starts from an initial solution
randomly generated in X and moves repeatedly from a
solution to a neighbor. At each step of the procedure, a
subset V* of the neighborhood of the current solution s is
generated and the local optimization problem

})()({ * sNVxxf min ⊆∈ is solved. In order to escape

from local minima, the idea is to move to the best
neighbor s′ in V* even if f(s′) > f(s). Following a steepest
descent / mildest ascent approach, a move may result in a
best possible improvement (or a least possible
deterioration) of the objective function value. Without
additional control, however, such a process can cause a
locally optimal solution to be re-visited immediately after
moving to a neighbor, or in a future stage of the search
process. To prevent the search from endlessly cycling
between the same solutions, a tabu list T is introduced.
This list keeps track of the reverses of the last │T│
modifications that have been done enacted during the
search process. A move from s to s′ will be considered

tabu if it is performed via a modification contained in T.
However the concept of tabu list sometimes appears to be
restrictive. Since only parts of the neighborhood are
explored, it might be worth returning after a while to a
solution visited previously to search in another direction.
An aspiration function A deals precisely with the rigidity
of the tabu list. It permits the tabu status of a move to be
dropped under certain favorable circumstances.

We define an aspiration level A(z) for each value z of
the objective function. Then a tabu move from s to s′ is
permitted if f(s′)<A(f(s)). Initially A(z)=z , for all possible
values of z=f(s). This aspiration function is updated as
follows whenever we move from s to s′.
A(f(s))=min(A(f(s)),f(s′)) and A(f(s′))=min(A(f(s′)),f(s))

The above shows that the reverse move from s′ to s
is considered in the updating of A even though it was not
done explicitly. Generally the process is stopped as soon
as a given number of iterations have been performed
without improving the best solution obtained.

6 Chromosome Representation and Issues

For applying GAs directly or coupled with other
meta-heuristics, problem (chromosome) representation is
very important and it directly affects the performance of
the proposed algorithm. The first decision a designer has
to make is how to represent a solution in a chromosome.
We assume that the jobs and resources are arranged in an
ascending order according to the job lengths and
processor speeds. The information related job lengths
may be derived from historical data, some kind of
strategy defined by the user or through load profiling.
Figure 4 depicts the chromosome representation which
can be used in the 3 heuristic algorithms presented in
sections 6.1-6.3. Each block in the chromosome
represents a gene, coding a particular sequence of jobs.
Job J1 is allocated to resource R1, J2 to R2 and J3 to R3 and
so on. When J1 is completed, resource R1 is empty and
job JN is allocated. This procedure goes on until all the
jobs are allocated.

5

Figure 4. Representation of a chromosome

To optimize the makespan and flowtime we propose
to swap the usage of LJFR and SJFR heuristic
alternatively every time a new job is allocated to a
resource. In sections 6.1-6.3, we present a pure genetic
algorithm, hybrid genetic-simulated annealing and hybrid
genetic-tabu search approach for scheduling the jobs. If
the number of jobs is less than the number of resources,
we propose to allocate the jobs based on a First-Come-
First-Serve basis and LJFR heuristic (if possible). In a
grid environment, a scheduler might have to make a
multicriteria decision analysis (access policy, access cost,
resource requirements, processing speed, etc.) for
selecting an optimal resource.

To formulate the algorithm, we propose the
following job lists and resource lists. JList1 and Rlist1 are
to be dynamically updated through load profiling, grid
resource health status, and forecasted load status, etc.
along with grid information services. The entire job and
the resource lists are to be arranged in the ascending order
of the job lengths and processing speeds/access-cost
(based on multicriteria decision analysis). Frequency of
updating the lists will very much depend on the grid
condition, availability of resources and jobs.

JList1 = Job list maintaining the list of all the jobs to be

processed.
Jlist2 = Job list maintaining only the list of jobs being

scheduled.
Jlist3 = Job list maintaining only the list of jobs already

allocated.
Rlist1 = List of available resources (including time

frame).
Rlist2 = List of resources already allocated to jobs.
Rlist3 =List of free resources = (Rlist1-Rlist2).

6.1 GA Approach for Job Scheduling on the

Grid
1. If the grid is active and (Jlist1=0) and no new jobs

have been submitted, wait for new jobs to be
submitted. Update Rlist1 and Jlist1.

2. If (Rlist1=0), wait until resources are available. If
Jlist1>0, update Jlist2. If Jlist2 < Rlist1 (available
resources) allocate the jobs on a first-come-first-
serve basis and if possible allocate the longest job J
on the fastest resource M according to the LJFR
heuristic. If Jlist1 > Rlist1, job allocation is to be
made by following the heuristic algorithm detailed
below. Take jobs and available resources from Jlist2
and Rlist3.

3. At t =0; generate an initial population with P
chromosomes Popi(t), encoding the schedules.
Feasibility of each chromosome is to be checked
and makespan for each schedule represented by the
chromosome is to be calculated. In certain cases,
illegal offspring's (duplicated jobs, missing jobs,
jobs outside the list) are generated due to genetic
operators that require to be repaired immediately to
ensure that each job appears only once in the
sequence.

4. Begin GA loop

While (until the specified fitness value is achieved)
do;

a. For each chromosome (i=1 to P), first allocate
the jobs to the available resources based on
the LJFM heuristic and once a resource is free
(due to job completion), a job is allocated
based on the SJFM heuristic. There after LJFR
– SJFR heuristic is applied alternatively after
completion of every job. Calculate the make
span and total flowtime for the generated
schedule. Also calculate fitness value of each
chromosome, Fitnessi=FitPopi(t);

b. For (i=1 to P), Create new population
NewPopi(t+1) which is choosen randomly
based on the fitness value of each
chromosome Popj(t) in the current population
Pop(t). The probability for selection a
chromosome for the next generation may be

defined as
� =

=
P
k k

j
j Fitness

Fitness
p

1
or according

to the selection strategy adopted;

c. Apply crossover operator on the population
according to the probability selected,
Crospop(t+1) = recombined chromosomes of
the population NewPopi(t+1);

d. Apply mutation operator on the population

according to the probability selected,
MutPop(t+1) = mutated population
CrosPop(t+1).

5. Evaluate fitness of each individual and when the

Fitnessi has reached the required value end loop.

6

6. Check the feasibility of the generated schedule with
respect to resource availability and user specified
requirements. Then allocate the jobs to the
resources and update Jlist2, JList3, RList2 and
Rlist3. Un-allocated jobs (infeasible schedules or
resource non-availability) shall be transferred to
JList1 for re-scheduling or dealt with separately.

7. Repeat steps 1-6 as long as the grid is active.

We define that a job schedule is feasible only if the

makespan (Cmax) does not exceed the user specified
completion time. We suggest the use of a penalty function
to distinguish a feasible schedule from the non-feasible
and relate as (User specified completion time - makespan
of the generated schedule). If makespan exceeds the
required completion time the fitness value will be
negative. The fitness function is set to the inverse of the
flow time (ΣCj) from the generated schedule. The
sequences of the jobs could be coded in a sequence of
integer arrays. In our scheduling experimentations using
GAs [6][15], we have achieved good results using 2-point
crossover operator and mutation operators with a
selection probability of 1.0.

6.2 Hybrid GA-SA Approach for Job

Scheduling on the Grid
GA-SA is a hybrid random searching technique

fusing GA and SA, inheriting the convergence property
of SA and parallalization capability of GA. Each
genotype is assigned an energy threshold, initially equal
to the energy of the randomized bit string to which it is
assigned. If the energy of the mutant exceeds the
threshold of the parent that spawned it, the mutant is
rejected and a new genotype is considered. However if
the energy of the new genotype is less than or equal to the
energy of the parent, the mutant is accepted as a
replacement for its progenitor. GA-SA uses an Energy
Bank (EB) to keep track of the energy liberated by the
successful mutants. Whenever a mutant passes the
threshold test, the difference between the threshold and
the mutant’s energy is added to the EB for temporary
storage. Once the quantum of energy is accounted, the
threshold is reset so that it equals the energy of the
accepted mutant and move on to next member of the
population. After each member has been subjected to a
random mutation, the entire population is reheated by
changing the threshold. The rate of reheating is directly
proportional to the amount of energy accumulated in the
EB (from each member of the population) as well as
designer’s choice of coolant rate (refer to section 4).
Annealing results from repeated cycles of collecting
energy from successful mutants and then redistributing
nearly all of it by raising the threshold energy of each
population member equally [11]. The GA-SA algorithm

for job scheduling on computational grid can be
formulated as follows:

1 and 2 are the same as in section 6.1

3. Generate an initial population of P schedule vectors
and for i =1 to P, initialize the ith threshold, Th(i), with
the energy of the ith configuration. For each schedule
(i=1 to P), first allocate the jobs to the available
resources based on the LJFM heuristic and once a
resource is free (due to job completion), a job is
allocated based on the SJFM heuristic. There after
LJFR – SJFR heuristic is applied alternatively after
completion of every job.

4. Begin the cooling loop
• Energy bank (EB) is set to zero and for i = 1 to

N randomly mutate the ith schedule vector.

• Compute the Energy (E) of the resulting mutant
schedule vector.

• If E > Th(i) , then the old configuration is
restored.

• If E ≤ Th(i) , then the energy difference (Th(i)
–E) is incremented to the Energy Bank (EB) =
EB+ Th(i) –E. Replace old configuration with
the successful mutant

End cooling loop.

5. Begin reheating loop.

• Compute reheating increment
N

kTEB
eb i)(*

= ,

for i= 1 to N. (Ti(k)=cooling constant).

• Add the computed increment to each threshold
of the schedule vector.

End reheating loop.

6. Go to step 4 and continue the annealing and
reheating process until an optimum schedule vector
is found.

7. Same as step 6 and 7 as mentioned in section 6.1.

6.3 Hybrid GA-TS Approach for Job
Scheduling on the Grid

Contrary to the SA, there exists no convergence
theorem for TS. The research and experimentation’s have
proven TS is powerful, very flexible and easy to
implement. However performance of TS very much
depends on the selection of parameters and a good
knowledge of the problem to be solved is required to
design the parameters appropriately. Hybridization of TS
with GA makes the algorithm more robust. In the hybrid
GA-TS approach, reproduction, crossover and mutation

7

Figure 5. Simulation results demonstrating resource usage and job allocation schedule using
pure GA approach.

in GA is replaced by reproduction, crossover and Tabu
search. Instead of random mutation changes each member
of the population undergoes a separate optimization
process described by a tabu algorithm [[1122]]..[13]. The
application of the hybrid algorithm for job scheduling on
computational grid can be formulated as follows:

1, 2 and 3 are the same as in section 6.1.

4. Begin GA-TS loop.

a, b and c are the same as mentioned in section 6.1.

d. Begin tabu algorithm

Initialization

i. Evaluate neighborhood N (S) for every
individual of CrosPop(t+1). Generate
maximum number of feasible schedule for
each CrosPop(t+1) individual at each step of
the search.

ii. For every schedule, evaluate the makespan.
Let s*=s; for the best solution reached so far
and set iteration counter (iteration)= 0. For
the best moves (schedules created) set the
iteration counter bestiteration =0, set tabu
list (T=0) and initialize the aspiration
function A.

Begin loop

iii. While (iteration-bestiteration < nmax) do
iteration= iteration+1;
generate a set of feasible V* solutions

ii mss ⊕= ,such that Tmi ∉
or f(si) < A(f(s));
Choose the best solution s′ in V*; update
tabu list T and A(f);
If (f(s′) < f(s*)) then
s*=s′
bestiteration=iteration;
s=s′

End loop when number of iterations has
reached nmax.

5. the same as steps 6 and 7 as mentioned in
section 6.1.

7. Algorithm performance demonstration

Simulation using pure GA was carried out to
demonstrate the proposed scheduling method using the
data given in table 1. To simplify the simulation, we
considered a finite number of resources and assumed that
the processing speeds of the resources (Cycles Per Unit
Time-CPUT) and the job lengths (processing
requirements in cycles) are known.

Table 1: Test data (13 jobs and 3 resources)

Resource Speed (cput) Job lengths (cycles)
R1 = 4 J1=6 J7=30
R2 = 3 J2=12 J8=36
R3 = 2 J3=16 J9=40

 J4=20 J10=42
 J5=24 J11=48
 J6= 28 J12=52
 J13=60

Figure 5 demonstrates one of the optimal ways of

allocating the 13 jobs to the 3 resources such that all the
resources are utilized efficiently and all the jobs are
completed in minimum time. From the simulation results,
all the resources were equally utilized for 46 time units
(makespan) and the total time taken for completion of all
the jobs is 138 time units (flowtime). Initially J3, J2 and J4
are allocated to R1 R2 and R3 respectively. After the
completion of the allocated jobs (J3, J2 and J4) next set of
jobs are assigned to the resources and the complete
schedule is in figure 5.

8 Conclusions and Future Work

In this paper, we attempted to address the
hybridization of the three of the popular nature's
heuristics namely GA, SA and TS for job scheduling on
large-scale distributed systems. Conceptually, when
compared to pure GA, the GA-SA algorithm should
provide a better convergence and GA-TS algorithm
should improve the search efficiency of GA. A number of

8

related works have shown that hybrid heuristic algorithms
do perform better than the classical GA approach [15].

Global optimization algorithms attract considerable
computational effort. In a grid environment, the main
emphasize will be to generate the schedules at a minimal
amount of time. Especially as the demand increases,
when the number of jobs and the resources starts
towering up, conventional GAs become time consuming.
Fortunately GAs work with a population of independent
solutions, which makes it easy to distribute the
computational load among several processors. The design
of parallel GA's involves choices such as using one
population or multiple populations. In both cases, the size
of population or populations must be determined
carefully, and when multiple populations are used, one
must decide how many to use. In addition, the
populations may remain isolated or they may
communicate by exchanging individuals. Communication
involves extra costs and additional decision on
topologies, on how many individuals are exchanged, and
on the frequency of communications [14].

Currently a large number of research projects
worldwide are exploring different approaches to the
development of grid technologies and global scheduling
systems [16]. Even though significant progress has been
made in modeling the infrastructure for grid computing, a
close review clearly indicates that not much progress is
made in formulating an efficient, globally optimized,
grid-scheduling algorithm for allocating jobs. Therefore,
we plan to explore this space in depth along with the
implementation and evaluation of the heuristics and
algorithms in the context of global computational grids.

References
[1] Foster I, Kesselmann C, (Eds.), The Grid: Blueprint

for a New Computing Infrastructure, Morgan
Kaufmann Publishers, USA, 1999.

[2] Buyya R, Abramson D, Giddy J, Grid Resource
Management, Scheduling, and Computational
Economy, International Workshop on Global and
Cluster Computing, Japan, 2000.

[3] Baker M, Buyya R, Laforenza D, The Grid:
International Efforts in Global Computing,
International Conference on Advances in
Infrastructure for Electronic Business, Science, and
Education on the Internet, Rome, Italy, 2000.

[4] Buyya R, Abramson D, Giddy J, An Economy
Driven Resource Management Architecture for
Global Computational Power Grids, International
Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, USA,
2000.

[5] Abraham A, Nath B, Hybrid Heuristics for Optimal
Design Of Artificial Neural Networks, Third

International Conference on Recent Advances in
Soft Computing (RASC2000), England, June 2000.

[6] Nath B, Lim S, Bignall R J, A Genetic Algorithm
For Scheduling Independent Jobs On Uniform
Machines With Multiple Objectives, Proceedings of
the International Conference on Computational
Intelligence and Multimedia Applications, Australia,
pp. 67-74, 1998.

[7] Goldberg DE, Genetic Algorithms in Search,
Optimization and machine learning, Addison-
Wesley Publishing Company, Inc., 1989.

[8] Taillard.E, Parallel Tabu Search Technique for the
Job Shop-Scheduling Problem, ORSA Journal of
Computing, (6):108-117, 1994.

[9] Glover F, Taillard E, De Werra D, A User's Guide to
Tabu Search,. In: Hammer PL (Ed.) Annals Of
Operations Research, Volume 41, 3-28, pp 3-27,
1993.

[10] Yao. X, A New Simulated Annealing Algorithm,
International Journal of Computer Mathematics, 56:
pp.161-168, 1995.

[11] Price KV, Genetic Annealing, Dr. Dobbs Journal,
Vol.220, pp. 127-132, Oct 1994.

[12] Colorni A., M.Dorigo, F.Maffioli, V. Maniezzo, G.
Righini & M. Trubian, Heuristics from Nature for
Hard Combinatorial Problems, International
Transactions in Operational Research, Vol (3) 1, pp
1-21, 1996.

[13] Costa D., An Evolutionary Tabu Search Algorithm
and the NHL Scheduling Problem, INFOR Vol. 33,
No.3, 161-178, 1995.

[14] Cantu-Paz E, Designing Efficient and Accurate
Parallel Genetic Algorithms, Technical Report No.
99017, Illinois Genetic Algorithms Laboratory,
UIUC, USA, July 1999.

[15] Nath B, A Hybrid GA-SA Algorithm for Flowshop
Scheduling Problems, In Proceedings of the
International Conference on Computer Integrated
Manufacturing, ICCIM97, pp 462-471, 1997.

[16] Grid Computing Information Centre:
http://www.gridcomputing.com.

[17] Nath B & Abraham A, Parallel Machine Scheduling
using Genetic Algorithms, International AMSE
conference on Computer Modeling, Simulation and
Communication, (CMSC-99), India, 1999.

[18] Wall B W, A Genetic Algorithm for Resource
Constrained Scheduling, PhD Thesis, Department of
Mechanical Engineering, Massachusetts Institute of
Technology, USA, 1996.

