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Abstract 

Computational Grid (Grid Computing) is a new 
paradigm that will drive the computing arena in the new 
millennium. Unification of globally remote and diverse 
resources, coupled with the increasing computational 
needs for Grand Challenge Applications (GCA) and 
accelerated growth of the Internet and communication 
technology will further fuel the development of global 
computational power grids. In this paper, we attempt to 
address the scheduling of jobs to the geographically 
distributed computing resources. Conventional wisdom in 
the field of scheduling is that scheduling problems exhibit 
such richness and variety that no single scheduling 
method is sufficient. Heuristics derived from the nature 
has demonstrated a surprising degree of effectiveness and 
generality for handling combinatorial optimization 
problems. This paper begins with an introduction of 
computational grids followed by a brief description of the 
three nature's heuristics namely Genetic Algorithm (GA), 
Simulated Annealing (SA) and Tabu Search (TS). 
Experimental results using GA are included. We further 
demonstrate the hybridized usage of the above algorithms 
that can be applied in a computational grid environment 
for job scheduling. 
 
Keywords: Computational grid, grid computing, 
scheduling, resource management, global optimization 
algorithms, genetic algorithm, simulated annealing, tabu 
search, nature's heuristics and hybrid algorithm. 
 
1 Introduction 

Grid Computing (GC) is the ultimate framework to 
meet the growing computational demands in the new 
millennium [1-3]. To meet the growing needs of the 
computational power, geographically distributed 
resources need to be logically coupled together to make 
them work as a unified resource (see Figure 1). The 
continuous exponential growth of the Internet and World 
Wide Web (WWW), ever improving high-bandwidth 
communications, wide spread availability of powerful 
computers and low-cost components will further enhance 
transformation of computational grids to a reality. 

Computing resources are geographically distributed under 
different ownerships each having their own access policy, 
cost and various constraints. Every resource owners will 
have a unique way of managing and scheduling resources 
and the grid schedulers are to ensure that they do not 
conflict with resource owner's policies. In the worst-case 
situation, the resource owners might charge different 
prices to different grid users for their resource usage and 
it might vary from time to time. Traditionally, most of the 
schedulers followed system centric approach in resource 
selection and often completely ignore the user 
requirements. In an economic-based approach an optimal 
schedule often relies on a trade off between cost and the 
user specified deadline [4]. Our approach is to 
dynamically generate an optimal schedule so as to 
complete the tasks in a minimum period of time as well 
as utilizing the resources in an efficient way. 

In recent years, several analogies from the natural 
and social systems have been widely accepted to form 
powerful heuristics, which have proven to be highly 
successful in solving several NP hard global optimization 
problems [5][12][18]. Some of the common 
characteristics of nature's heuristics are the close 
resemblance of a phenomenon existing in nature, non-
deterministic; present implicitly a parallel structure and 
adaptability. In section 3, 4 and 5 we will briefly discuss 
the features of genetic algorithm, simulated annealing and 
tabu search and in section 6 we demonstrate how it can be 
used to formulate scheduling independent tasks in a grid 
environment. 
 
2 Grid Resource Management and 

Scheduling Issues 
Figure 1 depicts the general framework for grid 

computing focusing on the interaction between grid 
resource broker, Domain Resource Manager (DRM) and 
the grid information server. The grid resource broker is 
responsible for resource discovery, deciding allocation of 
a job to a particular resource, binding of user applications 
(files), hardware resources, initiate computations, adapt to 
the changes in grid resources and present the grid to the 
user as a single, unified resource. It finally controls the 
physical allocation of the tasks and manages the available 
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Figure 1. General Framework of a Computational Grid 
 
 

resources constantly while dynamically updating the grid 
scheduler whenever there is a change in resource 
availability. In a grid environment knowing the 
processing speeds of the available resources and the job 
length of user applications is a tedious task. Usually it is 
easy to get information about the speed of the available 
resources but quite complicated to know the 
computational processing time requirements from the 
user. When the computing power demand is much greater 
than the available resources only dynamic scheduling will 
be useful. To conceptualize the problem as an algorithm, 
we need to dynamically estimate the job lengths from 
user application specifications or historical data. Soft 
computing techniques like fuzzy logic and artificial 
neural networks might be of useful aid in the parameters 
estimation process especially in times of uncertainty and 
vague data. 

To formulate the problem, we consider Jn 
independent user jobs n={1,2,….N} on Rm heterogeneous 
resources m={1,2,….,M} with an objective of minimising 
the completion time and utilizing the resources 
effectively. The speed of each resource is expressed in 
number of cycles per unit time, and the length of each job 
in number of cycles. Each job Jn has processing 
requirement Pj cycles and resource Rm has speed of Si 
cycles/unit time. Any job Jn, once allocated to a resource 
Rm, has to be processed on this resource until completion.  

To formulate our objective, define Cj as the 
completion time the last job j finishes processing. Define 
Cmax = max {ΣCj /M, j=1,…,N}, the makespan and ΣCj , 
as the flowtime. An optimal schedule will be the one that 
optimizes the flowtime and makespan [6]. The 
conceptually obvious rule to minimize ΣCj is to schedule 

Shortest Job on the Fastest Resource (SJFR). The 
simplest rule to minimize Cmax is to schedule the Longest 
Job on the Fastest Resource (LJFR). Minimizing ΣCj asks 
the average job finishes quickly, at the expense of the 
largest job taking a long time, whereas minimizing Cmax, 
asks that no job takes too long, at the expense of most 
jobs taking a long time. In summary, minimization of 
Cmax will result in maximization of ΣCj or vice versa [17]. 
 
3 Genetic Algorithm (GA) 

GAs are adaptive methods that can be used to solve 
optimization problems, based on the genetic process of 
biological organisms. Over many generations, natural 
populations evolve according to the principles of natural 
selection and "Survival of the Fittest", first clearly stated 
by Charles Darwin in "The Origin of Species". By 
mimicking this process, GAs are able to "evolve" 
solutions to real world problems, if they have been 
suitably encoded. GA search is constrained neither by the 
continuity of the function under investigation, nor the 
existence of a derivative function [7]. Figure 2 illustrates 
the functional block diagram of a GA. It is assumed that a 
potential solution to a problem may be represented as a 
set of parameters. These parameters (known as genes) are 
joined together to form a string of values (known as a 
chromosome). The particular values the genes represent 
are called its alleles. The position of the gene in the 
chromosome is its locus. Encoding issues deal with 
representing a solution in a chromosome and 
unfortunately, no one technique works best for all 
problems. A fitness function must be devised for each 
problem to be solved. Given a particular chromosome, the  
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Figure 2. Flowchart of GA Iteration 
 

 
fitness function returns a single numerical fitness or 
figure of merit, which will determine the ability of the 
individual, which that chromosome represents. 
Reproduction is another critical attribute of GAs where 
two individuals selected from the population are allowed 
to mate to produce offspring, which will comprise the 
next generation. Having selected two parents, their 
chromosomes are recombined, typically using the 
mechanisms of crossover and mutation. Traditional view 
is that crossover is the more important of the two 
techniques for rapidly exploring a search space. Mutation 
provides a small amount of random search, and helps 
ensure that no point in the search space has a zero 
probability of being examined. If the GA has been 
correctly implemented, the population will evolve over 
successive generations so that the fitness of the best and 
the average individual in each generation increases 
towards the global optimum. Selection is the conservation 
of the fittest individuals for the next generation and is 
based on 3 parts. The first part involves determination of 
the individual’s fitness by the fitness function. The 
second part involves converting the fitness function into 
an expected value followed by the last part where the 
expected value is then converted to a discrete number of 
offspring. To avoid premature convergence of GAs due to 
interference from mutation and genetic drift, sharing and 
crowding may be used to decrease the amount of 
duplicate schemata in the population. Elitism may be 
incorporated to keep the most superior individuals (and 
superior schemata) within the population. The use of GA 
in formulating the scheduling algorithm is discussed in 
section 6.1. 
 
4 Simulated Annealing (SA) 

SA exploits an analogy between the way in which a 
metal cools and freezes into a minimum energy 
crystalline structure (the annealing process) and the 
search for a minimum in a more general system. SA's 
major advantage over other methods is an ability to avoid 
becoming trapped at local minima. Figure 3 shows a 
flowchart of SA iteration. The annealing schedule, i.e., 
the temperature-decreasing rate used in SA is an 
important factor, which affects SA's rate of convergence. 

The algorithm employs a random search, which not only 
accepts changes that decrease objective function " f ", but 
also some changes that increase it. The latter are accepted 
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parameters. Several SAs have been developed with 
annealing schedule inversely linear in time (Fast SA), 
exponential function of time (Very Fast SA) etc. We 
explain a SA algorithm [10], which is exponentially faster 
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Where bi > 0 is a constant parameter and k0 is a 
sufficiently large constant to satisfy the above equation if 
the generation function is adopted. 
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Figure 3. Flowchart of SA Iteration 
 
 

5 Tabu Search (TS) 
TS is a meta-strategy for guiding known heuristics to 

overcome local optimality and has now become an 
established optimization approach that is rapidly 
spreading to many new fields. The method can be viewed 
as an iterative technique which explores a set of problem 
solutions, denoted by X, by repeatedly making moves 
from one solution s to another solution s′ located in the 
neighborhood N(s) of s. These moves are performed with 
the aim of efficiently reaching optimal solution by the 
evaluation of some objective function f(s) to be 
minimized [8][9][13]. In the sequel we sketch the basic 
ingredients of TS.  

Let us define the notion of neighborhood N(s) for 
each solution s in X. By definition N(s) is a set of 
solutions in X reachable from s via a slight modification 
m.  

N(s) = {s′ ∈  X │s′ = s ⊕ m, m ∈  M} 

Where M contains all possible modifications and             
s′ = s ⊕ m means that s′ is obtained by applying 
modification m to s. TS starts from an initial solution 
randomly generated in X and moves repeatedly from a 
solution to a neighbor. At each step of the procedure, a 
subset V* of the neighborhood of the current solution s is 
generated and the local optimization problem 

})()({ * sNVxxf min ⊆∈  is solved. In order to escape 

from local minima, the idea is to move to the best 
neighbor s′ in V* even if f(s′) > f(s). Following a steepest 
descent / mildest ascent approach, a move may result in a 
best possible improvement (or a least possible 
deterioration) of the objective function value. Without 
additional control, however, such a process can cause a 
locally optimal solution to be re-visited immediately after 
moving to a neighbor, or in a future stage of the search 
process. To prevent the search from endlessly cycling 
between the same solutions, a tabu list T is introduced. 
This list keeps track of the reverses of the last │T│ 
modifications that have been done enacted during the 
search process. A move from s to s′ will be considered 

tabu if it is performed via a modification contained in T. 
However the concept of tabu list sometimes appears to be 
restrictive. Since only parts of the neighborhood are 
explored, it might be worth returning after a while to a 
solution visited previously to search in another direction. 
An aspiration function A deals precisely with the rigidity 
of the tabu list. It permits the tabu status of a move to be 
dropped under certain favorable circumstances. 

We define an aspiration level A(z) for each value z of 
the objective function. Then a tabu move from s to s′ is 
permitted if f(s′)<A(f(s)). Initially A(z)=z , for all possible 
values of z=f(s). This aspiration function is updated as 
follows whenever we move from s to s′. 
A(f(s))=min(A(f(s)),f(s′)) and A(f(s′))=min(A(f(s′)),f(s)) 

The above shows that the reverse move from s′ to s 
is considered in the updating of A even though it was not 
done explicitly. Generally the process is stopped as soon 
as a given number of iterations have been performed 
without improving the best solution obtained. 
 
6 Chromosome Representation and Issues 

For applying GAs directly or coupled with other 
meta-heuristics, problem (chromosome) representation is 
very important and it directly affects the performance of 
the proposed algorithm. The first decision a designer has 
to make is how to represent a solution in a chromosome. 
We assume that the jobs and resources are arranged in an 
ascending order according to the job lengths and 
processor speeds. The information related job lengths 
may be derived from historical data, some kind of 
strategy defined by the user or through load profiling. 
Figure 4 depicts the chromosome representation which 
can be used in the 3 heuristic algorithms presented in 
sections 6.1-6.3. Each block in the chromosome 
represents a gene, coding a particular sequence of jobs. 
Job J1 is allocated to resource R1, J2 to R2 and J3 to R3 and 
so on. When J1 is completed, resource R1 is empty and 
job JN is allocated. This procedure goes on until all the 
jobs are allocated. 
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Figure 4. Representation of a chromosome 
 

To optimize the makespan and flowtime we propose 
to swap the usage of LJFR and SJFR heuristic 
alternatively every time a new job is allocated to a 
resource. In sections 6.1-6.3, we present a pure genetic 
algorithm, hybrid genetic-simulated annealing and hybrid 
genetic-tabu search approach for scheduling the jobs. If 
the number of jobs is less than the number of resources, 
we propose to allocate the jobs based on a First-Come-
First-Serve basis and LJFR heuristic (if possible). In a 
grid environment, a scheduler might have to make a 
multicriteria decision analysis (access policy, access cost, 
resource requirements, processing speed, etc.) for 
selecting an optimal resource.  

To formulate the algorithm, we propose the 
following job lists and resource lists. JList1 and Rlist1 are 
to be dynamically updated through load profiling, grid 
resource health status, and forecasted load status, etc. 
along with grid information services. The entire job and 
the resource lists are to be arranged in the ascending order 
of the job lengths and processing speeds/access-cost 
(based on multicriteria decision analysis). Frequency of 
updating the lists will very much depend on the grid 
condition, availability of resources and jobs. 
 
JList1 = Job list maintaining the list of all the jobs to be 

processed. 
Jlist2 = Job list maintaining only the list of jobs being 

scheduled. 
Jlist3 = Job list maintaining only the list of jobs already 

allocated. 
Rlist1 = List of available resources (including time 

frame). 
Rlist2 = List of resources already allocated to jobs. 
Rlist3 =List of free resources = (Rlist1-Rlist2). 
 
6.1 GA Approach for Job Scheduling on the 

Grid 
1. If the grid is active and (Jlist1=0) and no new jobs 

have been submitted, wait for new jobs to be 
submitted. Update Rlist1 and Jlist1. 

 

2. If (Rlist1=0), wait until resources are available. If 
Jlist1>0, update Jlist2. If Jlist2 < Rlist1 (available 
resources) allocate the jobs on a first-come-first-
serve basis and if possible allocate the longest job J 
on the fastest resource M according to the LJFR 
heuristic. If Jlist1 > Rlist1, job allocation is to be 
made by following the heuristic algorithm detailed 
below. Take jobs and available resources from Jlist2 
and Rlist3. 

3. At t =0; generate an initial population with P 
chromosomes Popi(t), encoding the schedules. 
Feasibility of each chromosome is to be checked 
and makespan for each schedule represented by the 
chromosome is to be calculated. In certain cases, 
illegal offspring's (duplicated jobs, missing jobs, 
jobs outside the list) are generated due to genetic 
operators that require to be repaired immediately to 
ensure that each job appears only once in the 
sequence. 

 

4. Begin GA loop  
 

While (until the specified fitness value is achieved) 
do; 

 

a. For each chromosome (i=1 to P), first allocate 
the jobs to the available resources based on 
the LJFM heuristic and once a resource is free 
(due to job completion), a job is allocated 
based on the SJFM heuristic. There after LJFR 
– SJFR heuristic is applied alternatively after 
completion of every job. Calculate the make 
span and total flowtime for the generated 
schedule. Also calculate fitness value of each 
chromosome, Fitnessi=FitPopi(t); 
 

b. For (i=1 to P), Create new population 
NewPopi(t+1) which is choosen randomly 
based on the fitness value of each 
chromosome Popj(t) in the current population 
Pop(t). The probability for selection a 
chromosome for the next generation may be 

defined as 
� =

=
P
k k

j
j Fitness

Fitness
p

1
or according 

to the selection strategy adopted; 
 

c. Apply crossover operator on the population 
according to the probability selected, 
Crospop(t+1) = recombined chromosomes of 
the population NewPopi(t+1); 

 
d. Apply mutation operator on the population 

according to the probability selected, 
MutPop(t+1) = mutated population 
CrosPop(t+1). 

 
5. Evaluate fitness of each individual and when the 

Fitnessi has reached the required value end loop. 
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6. Check the feasibility of the generated schedule with 
respect to resource availability and user specified 
requirements. Then allocate the jobs to the 
resources and update Jlist2, JList3, RList2 and 
Rlist3. Un-allocated jobs (infeasible schedules or 
resource non-availability) shall be transferred to 
JList1 for re-scheduling or dealt with separately. 

 
7. Repeat steps 1-6 as long as the grid is active. 

 
We define that a job schedule is feasible only if the 

makespan (Cmax) does not exceed the user specified 
completion time. We suggest the use of a penalty function 
to distinguish a feasible schedule from the non-feasible 
and relate as (User specified completion time - makespan 
of the generated schedule). If makespan exceeds the 
required completion time the fitness value will be 
negative. The fitness function is set to the inverse of the 
flow time (ΣCj) from the generated schedule. The 
sequences of the jobs could be coded in a sequence of 
integer arrays. In our scheduling experimentations using 
GAs [6][15], we have achieved good results using 2-point 
crossover operator and mutation operators with a 
selection probability of 1.0.  
 
6.2 Hybrid GA-SA Approach for Job 

Scheduling on the Grid 
GA-SA is a hybrid random searching technique 

fusing GA and SA, inheriting the convergence property 
of SA and parallalization capability of GA. Each 
genotype is assigned an energy threshold, initially equal 
to the energy of the randomized bit string to which it is 
assigned. If the energy of the mutant exceeds the 
threshold of the parent that spawned it, the mutant is 
rejected and a new genotype is considered. However if 
the energy of the new genotype is less than or equal to the 
energy of the parent, the mutant is accepted as a 
replacement for its progenitor. GA-SA uses an Energy 
Bank (EB) to keep track of the energy liberated by the 
successful mutants. Whenever a mutant passes the 
threshold test, the difference between the threshold and 
the mutant’s energy is added to the EB for temporary 
storage. Once the quantum of energy is accounted, the 
threshold is reset so that it equals the energy of the 
accepted mutant and move on to next member of the 
population. After each member has been subjected to a 
random mutation, the entire population is reheated by 
changing the threshold. The rate of reheating is directly 
proportional to the amount of energy accumulated in the 
EB (from each member of the population) as well as 
designer’s choice of coolant rate (refer to section 4). 
Annealing results from repeated cycles of collecting 
energy from successful mutants and then redistributing 
nearly all of it by raising the threshold energy of each 
population member equally [11]. The GA-SA algorithm 

for job scheduling on computational grid can be 
formulated as follows: 
 

1 and 2 are the same as in section 6.1 
 

3. Generate an initial population of P schedule vectors 
and for i =1 to P, initialize the ith threshold, Th(i), with 
the energy of the ith configuration. For each schedule 
(i=1 to P), first allocate the jobs to the available 
resources based on the LJFM heuristic and once a 
resource is free (due to job completion), a job is 
allocated based on the SJFM heuristic. There after 
LJFR – SJFR heuristic is applied alternatively after 
completion of every job. 

 

4. Begin the cooling loop 
• Energy bank (EB) is set to zero and for i = 1 to 

N randomly mutate the ith schedule vector. 

• Compute the Energy (E) of the resulting mutant 
schedule vector.  

• If E > Th(i) , then the old configuration is 
restored. 

• If E ≤ Th(i) , then the energy difference (Th(i) 
–E) is incremented to the Energy Bank (EB) = 
EB+ Th(i) –E. Replace old configuration with 
the successful mutant  

End cooling loop. 

5. Begin reheating loop.  

• Compute reheating increment 
N

kTEB
eb i )(*

= , 

for i= 1 to N. (Ti(k)=cooling  constant). 

• Add the computed increment to each threshold 
of the schedule vector. 

End reheating loop. 

6. Go to step 4 and continue the annealing and 
reheating process until an optimum schedule vector 
is found.  

7.  Same as step 6 and 7 as mentioned in section 6.1. 
 

6.3 Hybrid GA-TS Approach for Job 
Scheduling on the Grid 

Contrary to the SA, there exists no convergence 
theorem for TS. The research and experimentation’s have 
proven TS is powerful, very flexible and easy to 
implement. However performance of TS very much 
depends on the selection of parameters and a good 
knowledge of the problem to be solved is required to 
design the parameters appropriately. Hybridization of TS 
with GA makes the algorithm more robust. In the hybrid 
GA-TS approach, reproduction, crossover and mutation 
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Figure 5. Simulation results demonstrating resource usage and job allocation schedule using 
pure GA approach. 

 

 
in GA is replaced by reproduction, crossover and Tabu 
search. Instead of random mutation changes each member 
of the population undergoes a separate optimization 
process described by a tabu algorithm [[1122]]..[13]. The 
application of the hybrid algorithm for job scheduling on 
computational grid can be formulated as follows: 
 

1, 2 and 3 are the same as in section 6.1. 
 

4. Begin GA-TS loop. 
 

a, b and c are the same as mentioned in section 6.1. 
 

d. Begin tabu algorithm 
 

Initialization 
 

i. Evaluate neighborhood N (S) for every 
individual of CrosPop(t+1). Generate 
maximum number of feasible schedule for 
each CrosPop(t+1) individual at each step of 
the search.  
 

ii. For every schedule, evaluate the makespan. 
Let s*=s; for the best solution reached so far 
and set iteration counter (iteration)= 0. For 
the best moves (schedules created) set the 
iteration counter bestiteration =0, set tabu 
list (T=0) and initialize the aspiration 
function A. 
 

Begin loop 
 

iii. While (iteration-bestiteration < nmax) do 
iteration= iteration+1; 
generate a set of feasible V* solutions 

ii mss ⊕= ,such that Tmi ∉  
or f(si) < A(f(s)); 
Choose the best solution s′   in V*; update 
tabu list T and A(f); 
If (f(s′  ) < f(s*)) then 
s*=s′   
bestiteration=iteration; 
s=s′   

End loop when number of iterations has 
reached nmax. 

 

5. the same as steps 6 and 7 as mentioned in 
section 6.1. 

 
7. Algorithm performance demonstration 

Simulation using pure GA was carried out to 
demonstrate the proposed scheduling method using the 
data given in table 1. To simplify the simulation, we 
considered a finite number of resources and assumed that 
the processing speeds of the resources (Cycles Per Unit 
Time-CPUT) and the job lengths (processing 
requirements in cycles) are known.  
 

Table 1: Test data (13 jobs and 3 resources) 

Resource Speed (cput) Job lengths (cycles) 
R1 = 4 J1=6 J7=30 
R2  = 3 J2=12 J8=36 
R3 = 2 J3=16 J9=40 

 J4=20 J10=42 
 J5=24 J11=48 
 J6= 28 J12=52 
 J13=60  

 
Figure 5 demonstrates one of the optimal ways of 

allocating the 13 jobs to the 3 resources such that all the 
resources are utilized efficiently and all the jobs are 
completed in minimum time. From the simulation results, 
all the resources were equally utilized for 46 time units 
(makespan) and the total time taken for completion of all 
the jobs is 138 time units (flowtime). Initially J3, J2 and J4 
are allocated to R1 R2 and R3 respectively. After the 
completion of the allocated jobs (J3, J2 and J4) next set of 
jobs are assigned to the resources and the complete 
schedule is in figure 5. 
 
8 Conclusions and Future Work 

In this paper, we attempted to address the 
hybridization of the three of the popular nature's 
heuristics namely GA, SA and TS for job scheduling on 
large-scale distributed systems. Conceptually, when 
compared to pure GA, the GA-SA algorithm should 
provide a better convergence and GA-TS algorithm 
should improve the search efficiency of GA. A number of 
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related works have shown that hybrid heuristic algorithms 
do perform better than the classical GA approach [15]. 

Global optimization algorithms attract considerable 
computational effort. In a grid environment, the main 
emphasize will be to generate the schedules at a minimal 
amount of time. Especially as the demand increases, 
when the number of jobs and the resources starts 
towering up, conventional GAs become time consuming. 
Fortunately GAs work with a population of independent 
solutions, which makes it easy to distribute the 
computational load among several processors. The design 
of parallel GA's involves choices such as using one 
population or multiple populations. In both cases, the size 
of population or populations must be determined 
carefully, and when multiple populations are used, one 
must decide how many to use.  In addition, the 
populations may remain isolated or they may 
communicate by exchanging individuals. Communication 
involves extra costs and additional decision on 
topologies, on how many individuals are exchanged, and 
on the frequency of communications [14]. 

Currently a large number of research projects 
worldwide are exploring different approaches to the 
development of grid technologies and global scheduling 
systems [16]. Even though significant progress has been 
made in modeling the infrastructure for grid computing, a 
close review clearly indicates that not much progress is 
made in formulating an efficient, globally optimized, 
grid-scheduling algorithm for allocating jobs. Therefore, 
we plan to explore this space in depth along with the 
implementation and evaluation of the heuristics and 
algorithms in the context of global computational grids. 
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